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Historically, small stocks have outperformed large stocks and value stocks have out-

performed growth stocks. These size and value premia are insufficiently explained

by the Capital Asset Pricing Model (CAPM). While the Fama-French three-factor

model is able to account for the size and value premia, it leaves the question of what

the fundamental risk is behind HML and SMB unanswered.

This paper introduces Schumpeter’s idea of creative destruction into asset pric-

ing theory as an explanation for the size and value premia. The idea is that new

and better products can render existing ones obsolete, posing an imminent risk for

any investment made. This “process of industrial mutation [...] that incessantly rev-

olutionizes the economic structure from within, incessantly destroying the old one,

incessantly creating a new one” (Schumpeter 1961, p. 83) can be seen throughout

history. Means of transportation, for example, developed within a century from

horse carriage to railroad, automobile and airplane, each invention challenging the

previous. Looking at the most recent technological revolution in the 1990s, inven-

tions in the field of software and information technology led, on the one hand, to

increased productivity and economic growth; on the other hand, they challenged ex-

isting business models of the music industry, media and printed newspapers. Thus,

in the sense that inventions are the ultimate driver of economic growth, inventions

are also the ultimate risk for an investment - namely the risk that the business idea

becomes obsolete.

We propose an asset pricing model with creative destruction risk in which small

and value stocks incur a higher probability of becoming destroyed during times of

technological change. Previous work shows that companies with a low market value

and a high book-to-market ratio are firms under distress: they are less productive

and have a higher probability of default (c.f. Chan & Chen 1991, Fama & French
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1995, Vassalou & Xing 2004). These distressed firms are less likely to survive techno-

logical revolutions. In equilibrium, investors have to be compensated for the risk of

creative destruction, resulting in higher expected returns for small and value stocks.

Our model is a two-factor model in the spirit of Merton’s (1973) Intertemporal

Capital Asset Pricing Model (ICAPM). It includes market return and innovation

growth, proxied by the change in patent activity as state variables. An increase of

invention activity raises the risk of creative destruction and thus reduces expected

cash flows of existing businesses. Long-horizon investors will prefer assets that are

less exposed to creative destruction as they provide a hedge against reinvestment

risk.

We find that returns of small and value stocks are negatively related to invention

growth, which results in an economically significant risk premium. Small value

stocks have the highest exposure to creative destruction risk and offer an additional

6.2 percent expected excess return per year. Large growth stocks, on the contrary,

provide a hedge against creative destruction, resulting in a discount of expected

excess return of 2.4 percent annually. The creative destruction risk model does

a good job in pricing the 25 size and book-to-market sorted portfolios with the

exception of the small-growth portfolio. The model is not rejected by the GMM

J-test and achieves a cross-sectional R2 of 60 percent. Finally, a patent activity

growth-mimicking portfolio can price both HML and SMB, suggesting that invention

growth is the real economy state variable captured by the Fama-French factors.

Our study connects several strands of literature. It relates the idea of creative

destruction - an idea well established in the Schumpeterian growth theory (e.g.

Segerstrom et al. 1990, Grossman & Helpman 1991, Aghion & Howitt 1992, Helpman

& Trajtenberg 1994) - to asset pricing. In this way we contribute to a growing body
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of literature that investigates the effects of technological innovations on asset prices

(Nicholas 2008, Comin, Gertler & Santacreu 2009, Hsu 2009, Pástor & Veronesi

2009). Furthermore, we incorporate creative destruction risk into Merton’s (1973)

ICAPM, arguing that investment opportunities change because new technologies

render existing businesses obsolete. This links our contribution to others that have

empirically tested the ICAPM (e.g. Campbell 1993, 1996, Campbell & Vuolteenaho

2004, Brennan et al. 2004).

Moreover, our work complements the literature that attempts to explain the size

and value puzzle. In particular, it refers to papers that associate market value and

book-to-market ratio with measures of firm distress (e.g. Chan et al. 1985, Chan

& Chen 1991, Fama & French 1995). While this literature links size and book-

to-market ratio to distress of individual firms, a connection to an aggregate distress

factor has not been established (Lakonishok et al. 1994, Vassalou & Xing 2004). But

to obtain a premium for size and value, we require a macro distress factor because

idiosyncratic distress risk can be diversified away (Cochrane 2008). Our model links

the individual firm’s default risk to the macro variable patent activity, the proxy for

creative destruction risk.

1 A Simple Model of Creative Destruction

and Asset Prices

1.1 Technological Change and Asset Payoffs

This section presents a simple model of creative destruction that explains why small

and value firms face a higher risk of being destroyed during times of technological

change. The model embodies the notion that individual inventions have the poten-
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tial to affect the whole economy (Aghion & Howitt 1992, Bresnahan & Trajtenberg

1995), and thus present a fundamental risk factor for investors. Examples of such

pervasive inventions are the steam engine, the electric motor and the semi-conductor.

Due to their impact on a wide range of sectors, Helpman & Trajtenberg (1994) refer

to these inventions as “general purpose technologies”. General purpose technologies

foster productivity gains and economic growth, but they also render older technolo-

gies obsolete and destroy existing businesses. Our model explains how investors take

this ambivalent nature of inventions into account, and derives implications for asset

prices.

The business model of firm i generates the payoff Xi,t+1. Nt inventions occur

in period t, each of which can destroy firm i with probability πi. If πi is small

and Nt large, the number of inventions Di,t+1 that destroy firm i follows a Poisson

distribution with λi,t = πi ·Nt. In the event that the business is destroyed (Di,t+1 >

0), the payoff Xi,t+1 equals zero. Thus, we can write the expected payoff at time t

in the following way:

Et[Xi,t+1] = exp(−Nt · πi) Et[Xi,t+1|Di,t+1 = 0], (1)

where P (Di,t+1 = 0) = exp(−Nt · πi) gives the probability that firm i survives.

The number of inventions Nt is a state variable, which influences the conditional

distribution of Xi,t+1. Since more innovations have the chance of destroying the

business, the expected payoff decreases when the number of inventions rises, as can

be seen from

∂Et[Xi,t+1]

∂Nt

= −πi · exp(−Nt · πi) Et[Xi,t+1|Di,t+1 = 0] < 0. (2)
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The negative effect of an increase in inventions on the conditional expected payoff

is stronger for firms with a higher individual baseline probability πi as long as the

probability that the firm survives is sufficiently high.1 Firms with a high πi are more

exposed to the risk of destruction induced by an increase in inventions Nt.

What are the characteristics of firms with a high baseline probability of default?

Vassalou & Xing (2004) provide evidence of higher default risk for value stocks.

Fama & French (1995) find that value stocks are less profitable than growth stocks

four years before and five years after their ranking. That small firms possess a

higher default risk is shown by Chan et al. (1985) and Vassalou & Xing (2004).

Furthermore, Chan & Chen (1991) find that small firms contain a large proportion

of marginal firms, i.e. firms with low production efficiency. Inefficient firms may not

survive times of technological change and thus face a high default risk. In summary,

the previous literature identifies small and value firms as being distressed, i.e. as

high π-firms.

Relating these findings to our model, it follows that the negative impact of an

increase in inventions on expected payoffs should be stronger for small and value

stocks. Thus, the model establishes the link between the individual destruction

probability πi and the aggregate risk factor inventions, Nt. Investors who hold

stocks which are more exposed to creative destruction risk have to be compensated

by higher expected returns in equilibrium.

1Differentiating (2) with respect to πi gives

∂2
Et[Xi,t+1]

∂Nt∂πi

= (πiNt − 1) · exp(−Nt · πi) Et[Xi,t+1|Di,t+1 = 0].

This expression is negative for λi,t = πi · Nt = E[Di,t+1] < 1, i.e. if the expected number of
innovations that destroy the firm is less or equal to one. This corresponds to a survival probability
of at least P (Di,t+1 = 0) = exp(−1) = 0.37.
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1.2 The Household’s Intertemporal Optimization Problem

We now outline an equilibrium model that accounts for the risk of creative destruc-

tion. The result is a two-factor model including changes in wealth and invention

growth as state variables. It is a special case of Merton’s (1973) ICAPM in discrete

time.

In an infinite-period setting, a representative investor maximizes his or her ex-

pected life-time utility of consumption:

U = Et

∞∑

j=0

δju(ct+j), (3)

where ct is consumption and δ the subjective discount rate. The investor can buy

a portfolio of n assets that generates wealth Wt+1 = RW
t+1(Wt − ct), where RW

t+1 =
∑n

i=1
wiRi with portfolio weights wi totaling one. Fama (1970) shows that the

infinite-period problem can be expressed as a two-period problem with

U = u(ct) + δEt[V (Wt+1, Nt+1)], (4)

where the value function V (·) is defined as the maximized value of the utility func-

tion, which depends on observable state variables that account for shifts in the in-

vestment opportunity set. In our case, the value function depends on the investor’s

wealth Wt+1 and the number of inventions Nt+1. The number of inventions captures

the risk of creative destruction and the changes in investment opportunities induced

by them. In a state of the world where many inventions occur - a technological revo-

lution - it is riskier to invest in firms which are already under distress and thus might

not survive. This has to be accounted for in the investor’s optimization problem.
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The first-order condition for optimal consumption and portfolio choice is given

by

pi,tu
′(ct) = δEt[VW (Wt+1, Nt+1)Xi,t+1], (5)

where pi,t is the price of asset i, Xi,t+1 its payoff and VW (·) refers to the deriva-

tive of the value function with respect to wealth W . Using the envelope condition

u′(ct) = VW (Wt, Nt), the stochastic discount factor can be written as

Mt+1 = δ
VW (Wt+1, Nt+1)

VW (Wt, Nt)
. (6)

First-order Taylor approximation yields the following linearized stochastic discount

factor:

Mt+1 = at + b1,t

Wt+1

Wt

+ b2,t

Nt+1

Nt

. (7)

Equation (5) implies the fundamental pricing equation for excess returns:

Et[Mt+1R
e
i,t] = 0. (8)

The corresponding expected return-beta representation reads:

Et[R
e
i,t+1] = βW,tλW,t + βN,tλN,t, (9)

where λW,t and λN,t capture the price of market and creative destruction risk, and

βW,t and βN,t are projection coefficients which measure the asset-specific exposure

to these risks.

We refer to this ICAPM with the two factors wealth portfolio and invention

growth as Creative Destruction Risk (CDR) model. Note that in the case of no
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changes in the investment opportunity set, i.e. if the value function only depends

on wealth V (Wt+1), the expected excess return of an asset is solely determined by

its exposure to market risk. The model simplifies to the CAPM. But investment

opportunities do change: inventions make certain businesses obsolete and create

new investment opportunities. The factor invention growth, Nt+1/Nt, captures this

change in investment opportunities. Equation (9) shows that an investor needs to

be compensated by a higher expected return when holding assets which are more

exposed to the risk of creative destruction.

2 Data

The key state variable in our model is invention activity. Equation (7) states that

changes in the investment opportunity set are related to invention growth, which

we approximate by the percentage change of patents issued, patent activity growth

(PAG). Data on newly issued patents come from the master classification file of the

United States Patent and Trademark Office (USPTO).

We argue that creative destruction risk is indeed best measured by overall patent

activity growth. Of course, in hindsight some patents prove to be more relevant than

others. Accounting for this difference using subsequent patent citations is an impor-

tant issue when measuring the technological impact of a specific invention (Nicholas

2008). This issue loses relevance, however, when measuring creative destruction risk.

Ex-post we observe the success or failure of an invention, and its creative destruc-

tion effects. But we are interested in the probability that an invention will destroy

businesses. This is the risk that an investor faces ex-ante. We argue above that

any patent has the potential to make an existing business obsolete. The example of
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laser technology, which revolutionized medicine, warfare, and telecommunications

alike, shows the serendipitous effect of an innovation that was unforeseeable ex-ante

(Townes 2003). It is thus the overall number of patents that best captures the risk

of creative destruction.

In our main analysis we use annual data on the 25 size and book-to-market sorted

portfolios ranging from 1927-2008. Data on portfolio returns and Fama-French fac-

tors are obtained from Kenneth French’s homepage. We consider the longest possible

sample, starting in 1927, the first available year of size and book-to-market sorted

portfolios. We choose a long-run, low frequency perspective for the following rea-

sons. First, the proxy patent activity may be prone to measurement error. The

number of patents issued in a certain period can be influenced by other factors, such

as institutional settings of the patent office or backlogs in the patent issuing process.

These effects are presumably aggravated at higher frequencies. Furthermore, annual

patent activity is arguably more suitable for capturing technological waves, which

generally range over many years. The long-run perspective also complies with the

ICAPM framework, in which an investor maximizes life-time utility.

[Insert Table 1 and Figure 1 about here]

Table 1 contains descriptive statistics on patent activity growth, market excess

return and the Fama-French factors. Figure 1 depicts time-series of HML, SMB and

patent activity growth. We use the value-weighted NYSE, AMEX and NASDAQ

stocks as a proxy for the wealth portfolio. The market excess return (MKT) is the

return of this portfolio minus the one-month Treasury Bill rate. The mean market

excess return in our sample is 7.6 percent annually, which can be interpreted as the

equity premium. HML (High Minus Low) is a portfolio that has long positions in
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stocks with high book-to-market value and short positions in stocks with low book-

to-market value. Similarly, SMB (Small Minus Big) is a portfolio long in small stocks

and short in large stocks.2 The average premium associated with a size and value

investment strategy is 3.6 percent for SMB and 5.1 percent for HML, respectively.

[Insert Table 2 about here]

The size and value premia are also apparent from Table 2, which shows the

average excess returns and standard deviations of the 25 portfolios sorted by size

and book-to-market. Excess returns are computed by subtracting the one-month

T-Bill rate from the raw returns. Going from left to right, value firms earn less than

growth firms, and, moving from top to bottom, small firms earn more than large

firms. The small-growth portfolio with an average annual excess return of just 3.7

percent is a well-known exception.

Patent activity growth averages at 2.4 percent and is considerably volatile, with

a standard deviation that is comparable to HML and SMB. The PAG series shows

no sign of autocorrelation and thus qualifies as a variable that captures unexpected

news with regard to technological change. An important empirical finding, which

we will elaborate on below, is that the macro variable patent activity growth is

negatively correlated with both HML and SMB portfolio returns.

3 Estimation Results and Discussion

3.1 Exposure to Creative Destruction Risk

Using the 25 test portfolios mentioned above, we estimate the creative destruction

risk model by means of two-pass regressions and GMM, exploiting the unconditional

2For details on the construction of the portfolios, see Fama & French (1993).
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moment restrictions implied by equation (8). Conditioning down and assuming time

invariant parameters in (7), estimates of the market- and PAG-beta can be obtained

by time-series regressions of excess returns on factors:

Re
i,t = ai + βMKT,iMKTt + βPAG,iPAGt + εi,t. (10)

Factor risk premia λMKT and λPAG are estimated by a cross-sectional regression of

average excess returns on beta estimates obtained in the first step. To calculate

standard errors, we use the Shanken (1992) correction.

[Insert Table 3 about here]

Table 3 displays the result of the time-series regression in Panel A. Here we

report the estimates of the market beta, the patent activity growth beta and the R2

of each time-series regression; Panel B shows the estimated factor risk premia λ̂MKT

and λ̂PAG.

The beta estimates vary considerably across portfolios with different size and

book-to-market value, with a pattern that is consistent with the theoretical model

of creative destruction risk. Small value firms have the strongest negative exposure

to patent activity growth, with the estimate β̂PAG equal to −0.42 and a t-statistic of

−2.3. Our theoretical framework suggests that these stocks possess a high baseline

destruction probability πi. A technology shock hits these firms’ expected payoffs the

hardest, resulting in a large drop in their prices, which corresponds to a pronounced

negative beta loading.

Large growth firms, in contrast, have positive exposure to patent activity growth;

the coefficient estimate β̂PAG equals 0.16, while the t-statistic is 2.8. These stocks

can generally be characterized by strong earnings growth and high profitability ratios
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and thus are most likely to persist throughout the technological revolution. Rela-

tively speaking, large growth stocks might even profit from the weakness of their

competitors and gain market power. This fact results in a positive beta loading with

patent activity growth.

[Insert Table 4 about here]

Creative destruction entails a considerable risk that is priced by the stock market.

Panel B in Table 3 provides the λ̂ estimates, which amount to 7.0 percent for the

market factor and −14.6 percent for patent activity growth, significant from both

a statistical and an economic point of view. Table 4 displays the estimated premia

attributed to market risk λ̂MKT · β̂MKT and to creative destruction risk λ̂PAG · β̂PAG,

respectively. When we look at risk premium associated with creative destruction,

small value firms earn an additional expected excess return of 6.2 percent annually

due to their high risk of becoming obsolete during times of technological change.

The opposite is the case for large growth firms, whose positive loading with patent

activity growth leads to a discount in expected excess returns of 2.4 percent. Overall,

this yields a spread in expected excess returns of 8.6 percentage points between assets

with the highest and assets with the lowest exposure to creative destruction risk.

3.2 Model Comparison

We now compare the empirical performance of the Creative Destruction Risk (CDR)

model to the CAPM (Sharpe 1964, Lintner 1965, Mossin 1966) and the Fama-French

(1995) three-factor model. The CAPM can be seen as a special case of the CDR

model in which investment opportunities do not change. The Fama-French model

with the SMB and HML factors represents the natural benchmark for the 25 size and
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book-to-market sorted portfolios. The purpose of this section is not to run a horse

race between the portfolio-based Fama-French model and our macro factor model.

As pointed out by Cochrane (2008), portfolio-based models will have a head start

on the 25 portfolios, which exhibit a correlation structure that is well captured by

three principal components (see also Lewellen, Nagel & Shanken 2010). The CAPM

and the Fama-French model rather serve as upper and lower benchmarks to gauge

the ability of the CDR model to account for size and value premia.

GMM estimation based on the stochastic discount factor representation (8) pro-

vides a convenient framework for model comparisons. The stochastic discount fac-

tors Mt+1 for CAPM, Fama-French model and CDR model are given by

b0 + bMKT MKTt+1 (CAPM)

b0 + bMKT MKTt+1 + bHMLHMLt+1 + bSMBSMBt+1 (Fama-French model)

b0 + bMKT MKTt+1 + bPAGPAGt+1 (CDR model).

Since we use excess returns as test assets, we de-mean all factors and set b0 = 1 to

ensure identification.

We report first-stage GMM estimates, with the identity matrix as a pre-specified

weighting matrix, and second-stage GMM estimates using an estimate of the optimal

weighting matrix. Our analysis focuses on first-stage GMM results. By giving

every portfolio the same weight, the model is forced to explain the size and value

premium (Cochrane 2005). Second-stage GMM provides more efficient estimates,

but often prices rather unusual long-short combinations of portfolios, and does not

allow a comparison across models (Parker & Julliard 2005). We consider second-

stage GMM results as a robustness check for our results. Following Jagannathan &
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Wang (1996), we report the cross-sectional R2 as an informal and intuitive measure

of goodness-of-fit.3

[Insert Table 5 about here]

Table 5 contains first- and second-stage GMM results. Estimation of the CAPM

and Fama-French model delivers the familiar results. The market excess return is a

relevant pricing factor, but taken alone fails to explain the size and value premia.

The R2 is low at 26 percent, and the GMM J-test rejects the CAPM on conventional

significance levels. Including SMB and HML in the stochastic discount factor, the

Fama-French model performs better, although SMB is not statistically significant

in this sample. The R2 amounts to 81 percent. Nevertheless, the J-test rejects the

Fama-French model on the five percent level. Second-stage coefficient estimates for

both models are similar to the first-stage results.

For the CDR model we find a significant market factor with a coefficient estimate

comparable in size to the Fama-French model, and a highly significant coefficient

for patent activity growth. The CDR model cannot be rejected on conventional

significance levels by the first-stage GMM J-test. Second-stage GMM yields quali-

tatively similar results. In terms of goodness of fit, the CDR model shows a clear

improvement compared to the CAPM, with an R2 of 60 percent.

For a more detailed performance evaluation, Figure 2 plots average realized ex-

cess returns vs. fitted expected excess returns for the CAPM, Fama-French and

CDR models. A good model fit is indicated if portfolios align along the 45-degree

line. Each of the 25 test assets is numbered; the first digit refers to the size quintile

3To calculate the R2 we run a cross-sectional regression of average realized excess returns on
betas including a constant, since only in this case is the decomposition in explained and residual
variation sensible. See Cochrane (2008) for further discussion.
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and the second digit to the book-to-market quintile. For example, 15 refers to the

portfolio with the smallest market value and the highest book-to-market ratio.

[Insert Figure 2 about here]

The first graph of Figure 2 depicts the well-known deficiency of the CAPM in

accounting for cross-sectional return differences of size and book-to-market sorted

portfolios. Unsurprisingly, the Fama-French model is more successful in pricing these

portfolios. The CDR model, which includes patent activity growth in addition to the

market factor, considerably improves the empirical performance as well. The model

is particularly effective in pricing the small value portfolios 14 and 15. Our model

of creative destruction implies that small and value firms are those with the highest

risk of becoming obsolete. The additional risk premium for creative destruction thus

corrects the mispricing of the CAPM.

While the CDR model generally improves the pricing of the 25 test assets, it

fails to account for the small return of portfolio 11. The small-growth portfolio is

well-known to present a challenge to asset pricing models (c.f. Yogo 2006, Campbell

& Vuolteenaho 2004). Figure 2 shows that this also holds true for the Fama-French

model. D’Avolio (2002), Mitchell et al. (2002) and Lamont & Thaler (2003) docu-

ment limits to arbitrage due to short-sale constraints for small-growth stocks, which

offers an explanation for the difficulty to price the small-growth portfolio. The lim-

its of arbitrage argument is also consistent with our findings from the time-series

regression. Table 3 shows a particularly low R2 for the small-growth portfolio, indi-

cating that this portfolio moves less with the common risk factors, which suggests

the presence of market frictions.4

4The high R2 of the Fama-French Model for all 25 portfolios in the time-series regression (c. f.
Table 1, Fama & French 1996) might be a result of the inclusion of the small-growth portfolio in
the construction of the SMB and HML factors.
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In summary, the CDR model delivers a good performance in statistical terms

and can - with the exception of the small-growth portfolio - account relatively well

for the cross-sectional return differences of the 25 size and book-to-market value

sorted portfolios.

3.3 A Patent Activity Growth-Mimicking Portfolio

Can patent activity growth capture the pricing information contained in the Fama-

French factors? To answer this question, we adopt a factor-mimicking portfolio

approach (Breeden, Gibbons & Litzenberger 1989), acknowledging that patent ac-

tivity growth may be an imperfect proxy for technological change. As pointed out by

Cochrane (2008), for any macro factor that prices assets we can also use its factor-

mimicking portfolio. It will contain the same pricing information, it will be less

prone to measurement error, and the pricing factor will be conveniently expressed

in terms of portfolio returns.

To construct the PAG-mimicking portfolio, we run the following regression:

PAGt = γ0 +
K∑

i=1

γiR
e
i,t + εt, (11)

where Re
i,t are returns in excess of the risk-free rate of K base assets. Following

Vassalou (2003), we use as base assets the six portfolios formed on size and book-

to-market, which are also used to construct the Fama-French factors (for details see

Fama & French 1993). Using the estimated gamma-coefficients as weights, we can

form the maximum correlation portfolio that mimics the patent activity growth:

PAGMt =
K∑

i=1

γ̂iR
e
i,t. (12)
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Since the base assets are zero-investment portfolios, PAGM itself is a zero-investment

portfolio, and we do not require the portfolio weights to add up to one.

[Insert Table 6 about here]

The estimated weights γ̂i resulting from the time-series regression can be found in

Table 6. As in Vassalou (2003), individual t-statistics are small due to multicollinear

portfolio returns, but the estimated weights are jointly significant, as indicated by

the F-test. While the presence of multicollinearity requires caution when interpreting

the estimated weights (Lamont 2001), their pattern is still worth mentioning. The

PAG-mimicking portfolio has long positions in value and large stocks and short

positions in growth and small stocks, rather the opposite of the HML and SMB.

The mimicking portfolio has maximum (positive) correlation with patent activity

growth, and is thus essentially a hedge against creative destruction risk.

[Insert Table 7 about here]

Further properties of the PAG-mimicking portfolio are shown in Table 7. Its

mean excess return is negative and statistically significant. The negative excess

return is consistent with the idea that the PAG-mimicking portfolio is a hedge

against the risk of creative destruction. Further, the mimicking portfolio shows a

strong negative correlation with the Fama-French factors, implying that the PAG-

mimicking portfolio explains a large proportion of the variation in these factors.

However, a pricing factor does not have to explain all variation in the Fama-

French factors to be able to price assets comparably well. HML and SMB are

neither derived from theory nor constructed to account for a specific economic risk.

Only a part of HML and SMB may actually be relevant for the pricing of assets

(Vassalou 2003, Petkova 2006).
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To assess the pricing properties of the PAG-mimicking portfolio, we follow Coch-

rane(2008), who argues that macro models like the CDR model should focus on

pricing the Fama-French factors rather than 25 highly correlated portfolios. Conse-

quently, we run the following time-series regressions:

SMBt = αS + β1,SMKTt + β2,SPAGMt + εS,t (13)

HMLt = αH + β1,HMKTt + β2,HPAGMt + εH,t. (14)

Since the right- and left-hand side variables of these equations are excess returns,

testing for the significance of the estimated regression intercepts (i.e. pricing errors)

is a test of whether the market factor and the PAG-mimicking portfolio can price

SMB and HML. This is ultimately a test of whether the Fama-French factors contain

additional information relevant for pricing assets.

[Insert Table 8 about here]

Estimation results of the regressions (13) and (14), along with restricted versions

including only MKT or PAGM as regressors, are reported in Table 8. Looking at

SMB results, we see that the market factor prices the SMB portfolio relatively well.

The beta-coefficient on MKT is significant and the pricing error is not significantly

different from zero.5 Including PAGM in the regression, we obtain a highly signifi-

cant beta estimate, the pricing error is further reduced, and the R2 increases from 16

to 51 percent. The pricing error is actually smallest when only the PAG-mimicking

portfolio is included as a regressor.

5The reasonable performance of the market factor in pricing the size premium is documented
by e.g. Cochrane (1999).
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The value puzzle is reflected in the result that the market factor alone fails to

price HML. The market beta is insignificant, and the pricing error of 4.5 percent

is almost as large as the average return on the HML portfolio, which equals 5.1

percent (see Table 1). Once we include the factor-mimicking portfolio, we obtain

a highly significant PAGM-beta, and the adjusted R2 increases from virtually zero

to 43 percent. Most importantly, the pricing error is statistically insignificant and,

with only 1.7 percent, small in economic terms.

In summary, the PAG-mimicking portfolio represents a hedge portfolio against

creative destruction risk and captures well the pricing information of the Fama-

French factors SMB and HML.

3.4 Technological Revolutions and the Fama-French Factors

The economic rationale behind the CDR model is that cross-sectional return dif-

ferences are caused by the fact that investors want to hedge creative destruction

risk. This risk changes over time, which should also be reflected in stock return

movements. Figure 1 shows that positive patent activity shocks tend to be accom-

panied by low returns of both HML and SMB, while negative patent activity shocks

coincide with high HML and SMB returns.

We observe peaks in patent activity growth in the 1950s and 1960s, as well as the

late 1990s. In the 1950s and 1960s important inventions in the field of electronics,

petrochemicals and aviation were made. Computer software, digital networks and

information technology were revolutionized in the 1990s. Both technology waves

changed the way the economy works substantially and thus brought about creative

destruction. Since small and value firms possess a higher risk of becoming obsolete

during technological revolutions, prices of these assets decrease. SMB and HML
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returns are low. Conversely, times of low risk of creative destruction, such as the

1940s or 1970s, result in high SMB and HML returns.

Looking at the technological waves of the last century it becomes clear why they

presented a substantial risk to a long-horizon investor. Consider someone who was

born in 1940, started to work at the age of 20, and subsequently started investing.

This would have been right in the middle of the technological revolution of the

1950s and 1960s. Assuming a retiring age of 65, the investor would have started to

consume savings in 2005, just after the peak of the information technology wave. At

this point, the investor would still have had a life expectancy of 19 years.6 During

his or her course of life, many inventions have been made, and many businesses have

been destroyed.

Technology shocks were a considerable risk for this investor in the past, and still

are in the retirement years to come. Large growth firms reflect efficiency, which

makes them more resilient to technological shocks, providing the investor with a

hedge against creative destruction risk. Small value firms, which, due to their in-

efficiency, are less likely to survive technological change, expose the investor to the

risk of creative destruction - a risk for which the investor demands compensation.

3.5 Robustness Checks

The results discussed in the previous sections are robust to a number of modifica-

tions. First, we confine the analysis to a post-war sample. As discussed before,

our study takes a long-run, low frequency perspective in order to capture techno-

logical waves and account for the life-time horizon of the investor. The majority of

empirical tests of asset pricing models, however, are conducted using post-war data

6Total population life expectancy in the United States, 2005. Source: National Vital Statistics
Reports, Vol. 58, No. 10, March 3, 2010.
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sampled at quarterly frequencies. To make our results comparable, and to show that

the Great Depression and the Second World War are not the main events that drive

our results, we re-run the model comparison using quarterly data from 1950:Q1-

2008:Q4. Table A. I shows the results. The poor performance of the CAPM is even

more severe in this period, with a cross-sectional R2 of only 7 percent. As before, the

Fama-French model achieves a high R2 of 79 percent, but is rejected by the J-test

at the 5 percent level. The results for the CDR model are confirmed: patent activ-

ity growth is a significant factor that helps to price size and book-to-market sorted

portfolios, and the model is not rejected by the first-stage GMM J-test, achieving an

R2 of 56 percent, comparable in size to the long-run sample. We conclude that the

Great Depression and the Second World War do not affect our findings with regard

to the role of creative destruction risk in asset pricing.

Second, we also consider a slightly different set of test assets using equally

weighted portfolios. Our results are also robust for this set of test assets, as can be

seen from Table A. II. The CDR model is not rejected by the J-test and the R2 is

even closer to that of the Fama-French model.

Third, we acknowledge recent criticism put forth by Lewellen et al. (2010) about

the widespread use of size and book-to-market sorted portfolios in empirical asset

pricing. To account for the presence of strong commonalities in these portfolios,

we extend our set of test assets by ten industry portfolios. Results based on this

broader sample can be found in Table A. III. Again, the results are robust in terms

of parameter significance, specification test, and goodness-of-fit, and confirm the

conclusions drawn from the main sample.
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4 Conclusion

This paper proposes a model of creative destruction and asset prices as an expla-

nation for the size and value premia. Small and value firms have been shown to be

under distress: they are less productive and have a higher default risk. These firms

are less likely to survive technological revolutions, which results in higher expected

returns for these stocks. An investor who maximizes life-time utility wants to hedge

the reinvestment risk caused by technology shocks. Hence, patent activity growth,

which reflects creative destruction risk, becomes an important state variable for the

investor.

The creative destruction risk model is consistent with several findings relating to

the size and value effects. It is in line with the view that HML and SMB are measures

of distress (e.g. Chan et al. 1985, Chan & Chen 1991, Fama & French 1995, Vassalou

& Xing 2004). Further, our results are in accordance with recent findings on the

Fama-French factors by Liew & Vassalou (2000) and Vassalou (2003), who show

that HML and SMB forecast GDP growth. If, as we argue, technological change

is the driving force behind the Fama-French factors, it should also result in greater

productivity and thus higher GDP growth in the future. The same technological

change that generates growth challenges existing businesses and is thus reflected in

the size and value premia.

Concluding his article on efficient markets, Fama (1991) writes: “In the end, I

think we can hope for a coherent story that (1) relates the cross-section properties of

expected returns to the variation of expected returns through time, and (2) relates

the behavior of expected returns to the real economy in a rather detailed way”

(p. 1610). This paper provides such a coherent story for the size and value effect,
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by explaining the variation of HML and SMB through time, and linking expected

returns to a fundamental risk in the real economy: the risk of creative destruction.
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5 Tables and Figures

Table 1: Descriptive Statistics of Factors
The table reports the mean, standard deviation, first-order autocorrelation AC(1)
and cross-correlations of the factors market excess return (MKT), Small Minus Big
(SMB), High Minus Low (HML) and patent activity growth (PAG) (all in percent).
The sample period is 1927-2008, the sampling frequency is annual, and p-values are
given in parentheses.

Correlation

Variable Mean Std. Dev. AC(1) MKT HML SMB PAG

MKT 7.6 21.0 0.04

(0.71)

HML 5.1 14.0 -0.01 0.11

(0.90) (0.31)

SMB 3.6 14.4 0.28 0.41 0.08

(0.01) (0.00) (0.50)

PAG 2.4 13.7 0.00 -0.08 -0.21 -0.21

(0.98) (0.48) (0.05) (0.06)
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Table 2: Descriptive Statistics of Portfolio Excess Returns
The table shows summary statistics on yearly excess returns of the 25 size (vertical)
and book-to-market value (horizontal) sorted portfolios from 1927-2008.

Book-to-Market

Low 2 3 4 High Low 2 3 4 High

Mean Standard Deviation

Small 3.7 9.5 13.0 16.0 18.7 38.2 35.3 34.1 37.0 40.2

2 7.2 11.9 13.4 14.7 15.4 32.3 31.4 30.3 32.7 33.2

3 8.4 11.1 12.4 12.7 14.3 30.6 27.5 26.8 27.7 32.1

4 8.0 9.1 10.8 12.0 13.1 24.1 25.4 26.3 27.3 34.5

Big 7.2 7.1 8.3 8.5 10.0 21.5 19.5 22.1 25.2 31.8
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Table 3: Time-Series and Cross-Sectional Regression
Panel A contains the result of the time-series regression of excess returns on factors
MKT and PAG. MKT denotes the market return in excess of the risk-free rate and
PAG is patent activity growth. Test assets are the 25 portfolios sorted by size (ver-
tical) and book-to-market value (horizontal), and the sample period is 1927-2008 at
annual frequency. Beta estimates for each factor are given on the left-hand side, while
t-statistics adjusted for heteroscedasticity are given on the right-hand side. The table
also displays the R2 of each regression in percent. Panel B contains the risk premia
(in percent) for each factor, estimated using the cross-sectional regression of average
excess returns on estimated betas. We use the Shanken (1992) correction to calculate
standard errors.

Panel A: Time-Series Regression

Book-to-Market

Low 2 3 4 High Low 2 3 4 High

β̂MKT tβMKT

Small 1.42 1.38 1.36 1.42 1.55 11.1 13.0 14.4 12.8 13.0

2 1.32 1.31 1.24 1.31 1.33 15.3 17.0 15.7 14.6 14.5

3 1.29 1.18 1.14 1.15 1.24 17.3 19.1 18.5 17.0 12.8

4 1.06 1.09 1.14 1.12 1.37 21.5 18.9 20.0 16.1 13.6

Big 0.97 0.89 0.97 1.06 1.28 25.7 31.1 20.7 17.3 14.2

β̂PAG tβP AG

Small -0.15 -0.24 -0.30 -0.39 -0.42 -0.78 -1.47 -2.04 -2.31 -2.31

2 -0.14 -0.18 -0.26 -0.26 -0.26 -1.03 -1.54 -2.20 -1.88 -1.86

3 -0.04 -0.20 -0.18 -0.26 -0.24 -0.35 -2.11 -1.95 -2.56 -1.60

4 0.10 -0.11 -0.14 -0.23 -0.12 1.27 -1.24 -1.55 -2.19 -0.77

Big 0.16 -0.02 -0.03 -0.08 -0.11 2.82 -0.51 -0.35 -0.84 -0.79

R2

Small 61.5 68.9 73.4 69.0 69.5

2 75.2 78.9 76.6 73.9 73.4

3 79.2 82.7 81.8 79.5 68.5

4 85.5 82.2 83.8 77.5 70.4

Big 89.3 92.5 84.5 79.3 72.3

Panel B: Cross-Sectional Regression

λ̂MKT 7.0 tλMKT
2.01

λ̂PAG -14.6 tλP AG
-2.06
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Table 4: Expected Excess Return
The table shows estimated expected excess returns in percent that are associated with
market risk β̂MKT · λ̂MKT and with creative destruction risk β̂PAG · λ̂PAG. MKT
denotes market excess return and PAG patent activity growth. Estimates are taken
from Table 3.

Book-to-Market

Low 2 3 4 High

β̂MKT · λ̂MKT

Small 9.9 9.6 9.5 9.9 10.8

2 9.2 9.2 8.7 9.2 9.3

3 9.0 8.2 8.0 8.0 8.7

4 7.4 7.6 7.9 7.8 9.6

Big 6.8 6.2 6.8 7.4 8.9

β̂PAG · λ̂PAG

Small 2.2 3.5 4.3 5.7 6.2

2 2.0 2.7 3.9 3.8 3.8

3 0.6 2.9 2.7 3.9 3.5

4 -1.4 1.6 2.0 3.4 1.7

Big -2.4 0.3 0.4 1.2 1.6
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Table 5: Model Comparison: CAPM, Fama-French and CDR
Model
The table contains first- and second-stage GMM results of the CAPM, Fama-French
and CDR models. Test assets are the 25 size and book-to-market sorted portfolios, and
the sample period is 1927-2008 at annual frequency; t-values are given in parentheses.
The table also reports the GMM J-statistic and associated p-value as well as the
cross-sectional R2 in percent.

CAPM Fama-French Model CDR Model

1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

bMKT -2.02 -2.92 -1.10 -1.94 -1.18 -1.32

(-5.46) (-7.31) (-1.80) (-3.16) (-1.88) (-2.34)

bHML -2.76 -3.53

(-3.95) (-4.63)

bSMB -0.80 -0.17

(-0.20) (0.00)

bPAG 7.54 5.24

(3.68) (2.74)

J-statistic 46.4 39.6 36.6 29.2 29.5 34.1

p-value 0.00 0.02 0.03 0.14 0.16 0.06

R2 25.8 81.1 59.9
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Table 6: Weights of the PAG-Mimicking Portfolio
The table shows the results of a time-series regression PAGt = γ0 +

∑N

i=1
γiR

e
i,t + εt

used to estimate the weights of the PAG-mimicking portfolio. Base assets are the
six portfolios sorted by size and book-to-market (small-growth, small-neutral, small-
value, big-growth, big-neutral and big-value (Fama & French 1993)). The sample
period is 1927-2008 at annual frequency. Coefficient estimates are reported on the
left-hand side; t-values are reported on the right-hand side. The table also displays the
coefficient of determination R2 (in percent) as well as the F-statistic for the hypothesis
γ1 = γ2 = ... = γ6 = 0 and the corresponding p-value.

Coefficients on Base Portfolios t-values

Growth Neutral Value Sum Growth Neutral Value

Small 0.10 -0.24 -0.09 -0.24 Small 1.18 -1.32 -0.61

Big 0.24 -0.10 0.09 0.24 Big 1.84 -0.45 0.56

Sum 0.34 -0.34 0.00 R2 10.3

F-statistic 2.42

p-value 0.03
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Table 7: Descriptive Statistics: PAG-Mimicking Portfolio
The table provides descriptive statistics for the PAG-mimicking portfolio. It displays
the mean excess return, the t-value for the null hypothesis that the average excess
return is equal to zero, the portfolio’s standard deviation and its correlation with
the market excess return (MKT), and the Fama-French factors HML and SMB. The
sample period is 1927-2008 at annual frequency.

Mean -1.66

t-value -3.40

Std. Dev. 4.41

Correlation with: MKT -0.21

HML -0.67

SMB -0.66
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Table 8: PAG-Mimicking Portfolio and the Fama-French Fac-
tors
The table shows the results of a time-series regression of the Fama-French factors
SMB and HML on the market excess return (MKT) and the patent activity growth-
mimicking portfolio (PAGM). The sample period is 1927-2008 at annual frequency. α

is the intercept of the time-series regression and represents the average pricing error.
The table also reports the adjusted R2 (in percent); t-values are given in parentheses.

SMB HML

MKT 0.28 0.20 0.08 -0.02

(3.40) (3.59) (1.07) (-0.31)

PAGM -2.16 -1.96 -2.12 -2.14

(-6.28) (-7.53) (-7.80) (-7.86)

Constant: α 1.41 -0.01 -1.19 4.56 1.62 1.73

(0.98) (-0.01) (-0.96) (2.81) (1.25) (1.33)

Adj. R2 16.0 43.1 50.5 0.1 43.8 43.2
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(a) Patent Activity Growth and SMB
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(b) Patent Activity Growth and HML
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Figure 1: Patent Activity Growth and the Fama-French Factors
The graph shows patent activity growth (in percent) and the Fama-French factors
Small Minus Big (SMB) and High Minus Low (HML) over the period 1927-2008.
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(a) CAPM
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(b) Fama-French Model
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(c) CDR Model
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Figure 2: Fitted Expected vs. Realized Average Excess Returns
The figures compare fitted expected vs. realized average excess returns (in percent)
given by the CAPM, the Fama-French model and the CDR model. The sample
period is 1927-2008; the sampling frequency is annual. The test assets are the 25
portfolios sorted by size and book-to-market value, where the first number denotes
the size quintile (1 being the smallest and 5 the largest), and the second number the
book-to-market quintile (1 being the lowest and 5 the highest).
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A Appendix

Table A. I: Model Comparison: Post-War Sample
The table contains first- and second-stage GMM results of the CAPM, Fama-French
and CDR models. Test assets are the 25 size and book-to-market sorted portfolios and
the sample period is 1950:Q1-2008:Q4 at quarterly frequency; t-values are given in
parentheses using Newey-West standard errors with 2 lags. The table also reports the
GMM J-statistic and associated p-value as well as the cross-sectional R2 in percent.

CAPM Fama-French Model CDR Model

1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

bMKT -3.01 -3.30 -3.78 -4.46 -1.80 -2.18

(-3.64) (-3.95) (-3.74) (-4.37) (-1.78) (-2.59)

bHML -6.39 -6.92

(-5.64) (-6.09)

bSMB -0.18 0.60

(-0.13) (0.44)

bPAG 9.42 3.25

(3.91) (2.03)

J-Statistic 41.6 41.3 35.4 34.7 30.8 38.3

p-value 0.01 0.02 0.04 0.04 0.13 0.02

R2 6.6 78.9 56.1

38



Table A. II: Model Comparison: Equally-Weighted Portfolios
The table contains first- and second-stage GMM results of the CAPM, Fama-French
and CDR models. Test assets are the 25 size and book-to-market sorted portfolios,
equally weighted. The sample period is 1927-2008 at annual frequency; t-values are
given in parentheses. The table also reports the GMM J-statistic and associated
p-value as well as the cross-sectional R2 in percent.

CAPM Fama-French Model CDR Model

1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

bMKT -2.15 -2.71 -0.64 -1.23 -0.98 -0.79

(-6.65) (-7.16) (-1.01) (-1.90) (-1.55) (-1.34)

bHML -3.05 -3.72

(-4.58) (-5.18)

bSMB -1.73 -1.01

(-1.18) (0.00)

bPAG 9.61 9.01

(5.20) (5.07)

J-Statistic 44.6 41.2 37.9 34.2 29.4 31.2

p-value 0.01 0.02 0.02 0.05 0.17 0.12

R2 51.2 85.4 75.4
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Table A. III: Model Comparison: Extended Sample
10 Industry and 25 Size and Book-to-Market Sorted Portfolios
The table contains first- and second-stage GMM results of the CAPM, Fama-French
and CDR models. Test assets are the 25 size and book-to-market sorted portfolios and
10 industry portfolios. The sample period is 1927-2008 at annual frequency; t-values
are given in parentheses. The table also reports the GMM J-statistic and associated
p-value as well as the cross-sectional R2 in percent.

CAPM Fama-French Model CDR Model

1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

bMKT -2.01 -2.88 -1.61 -2.15 -1.58 -1.48

(-6.24) (-8.42) (-2.92) (-3.95) (-3.63) (-3.33)

bHML -2.16 -3.01

(-3.32) (-4.54)

bSMB -0.06 0.09

(0.12) (0.00)

bPAG 4.24 5.72

(3.45) (4.87)

J-Statistic 58.7 51.6 56.4 47.4 46.7 43.3

p-value 0.01 0.03 0.00 0.04 0.06 0.11

R2 29.0 69.8 52.9
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