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Abstract

In this paper we study the pricing of betas that are hard to predict. We argue
that in a world where investors cannot perfectly predict betas, the degree of beta
predictability should matter for the extent to which these betas are priced. We
show this is in a model with ambiguity averse investors that are uncertain about an
asset’s risk exposure to an exogenous risk. By taking the perspective of an investor,
we provide empirical evidence to support this model, where downside, size and book-
to-market betas which are hard to predict, are also not priced when we use betas
that would be available to investors when these make their decisions.
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1 Introduction

While many factors have been proposed in the asset pricing literature to explain
the cross section of stock returns, little attention has been paid to how well in-
vestors can observe the risk exposure to these factors. While standard asset pricing
models assume that betas and risk exposures are known, in this paper we look
at asset pricing from the perspective of an investor that is not able to perfectly
observe the exposure of an asset to given risk factor. When investors use the stock
market to hedge risks, it is important for them to know an asset’s risk exposure
in order to effectively use it as a hedging instrument. However, if investors cannot
observe risk exposures, then how can they care enough that these risk exposures
are priced? In the extreme case where risk exposures are unpredictable, then
there should be no demand associated to these risk exposures and they should
not be priced. We first develop a simple model with exogenous risks and find that
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investors exposed to an exogenous risk have lower absolute demands for a hedging
asset as the asset’s exposure to the exogenous risk becomes more uncertain. In
turn, this drives expected returns of the hedging asset towards zero. Empirically
we show that downside, size and book-to-market betas are difficult to forecast,
and that betas available to investors at the date of the investment decision are
not priced.

We start by solving a model with two investor types, where one type is exposed
to an exogenous risk. Both investors have access to a zero net supply asset that can
potentially hedge this risk, however its correlation with the exogenous risk is not
directly observed. Without any uncertainty in hedging capability, the investor
exposed to exogenous risks will be willing to pay the other investor in order
reduce the risk exposure, while the other investor is willing to provide insurance
and reap a return premium. However, if the investor exposed to exogenous risk
has ambiguity aversion and cannot observe how well the hedging asset is able to
provide an effective hedge, then they will want lower amounts of this insurance,
driving the demand for this asset towards zero. As a result, the lower demand
drives the expected returns of the hedging asset towards zero in absolute terms.

In practice, the hedging portfolio can be thought of as a self financing portfolio
available for agents to invest in, that is long securities with high exposure to the
exogenous risk and short securities with low exposure. The exogenous risk is
a reduced form way of modeling additional risks orthogonal to market risk and
the hedging portfolio is a factor mimicking portfolio that agents can invest in.
Uncertainty around the hedging effectiveness is then uncertainty around the true
beta of this portfolio with respect to the exogenous risk 1. If investors are unable
to form portfolios that are exposed to exogenous risks ex-post, the result is that
exposure to exogenous risks should result in lower expected returns in absolute
terms.

Empirically, we provide evidence that this effect may be important when pric-
ing stocks. We specifically look at downside risk (Ang et al. (2006a)) and the two
additional risk factors from the Fama and French (1992) 3 factor model, SMB
(small-minus-big) and HML (high-minus-low) risk2. We empirically estimate a
model to forecast stock betas and find that exposures to these risk factors are
highly unpredictable, raising the question of how relevant beta loadings on these
risks should be in the cross section of returns. When using risk exposures avail-
able to investors at the portfolio formation date, we find either lower risk prices in

1To be more precise, we model uncertainty around the correlation and not the beta, however both are related.
2SMB and HML risk is a security’s beta exposure to long-short portfolios that go long small firms while shorting

large firms and long high book to market while shorting low book to market firms respectively. These portfolios are
assumed proxy for additional risks in addition to aggregate market risk. It should be noted however, that Daniel
and Titman (1997) has spurred a large literature that contests whether these portfolios do indeed proxy for risk.
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the best case scenario, or that risks are not priced at all. Furthermore, we use a
portfolio choice framework to empirically estimate investor demands for portfolios
and find that investors with potential hedging demand for these 3 risks do not
wish to invest long-short portfolios constructed based on risk exposure estimates
available at the portfolio formation date.

Related to this paper is the Harvey et al. (2016) critique on the enormous
amount of factors proposed in the literature to explain the cross section of returns.
In response to this, Harvey et al. (2016) to suggest raising the bar when looking
at t-statistics of additional anomalies due to the possible publishing bias resulting
from the large amount of research studying this question. Given the many at-
tempts by researchers to find additional factors that can explain the cross section
of returns (both published and unpublished attempts), Harvey et al. (2016) show
that we can no longer use the standard t-tests in order to determine if a factor is
indeed statistically significant. To address this issue, they devise a multiple test-
ing framework, where as the research community tests more factors, the threshold
for a t-test to be statistically significant increases as well.

While Harvey et al. (2016) might help us reduce the number of factors that
investors should consider in practice, we provide an additional dimension to solve
this issue. One problem that has been less explored is that many of these models
work under the assumption that investors observe the true risk loadings of assets,
when in fact they are estimated from the data, often with considerable estima-
tion error. Furthermore, in a setting where asset risk exposures are time varying,
knowing past risk exposures may provide insufficient information regarding future
risk exposures. Indeed, we find it hard to construct long-short portfolios with
reliable beta exposure to the three risks we measure. This underlines our main
question, if risk parameters are time-varying and unobservable to investors, un-
certainty around the risk estimates should be an important determinant of the
risk price.

Throughout the many risk factors proposed in the asset pricing literature, we
focus on three. We start with downside beta as defined by Ang et al. (2006a).
Downside risk is related to crash risk has recently become popular in financial
literature since the rare disasters model was re-introduced by Barro (2006), and
extended by Gabaix (2012) and Wachter (2013) to explain several puzzles in fi-
nancial economics such as the equity premium and excess variance puzzles. When
looking at crash risk in the cross section of returns, crash risk arises if some as-
sets are more sensitive to crashes than others, even when controlling for market
risk. Ang et al. (2006a) empirically investigate this with their measure for crash
risk, downside beta. Simply put, downside beta is the market beta of a security
estimated over the days where the market under-performs. When controlling for
market betas, stocks with high downside betas are expected to perform poorly
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during market crashes. Ang et al. (2006a) empirically show that stocks with high
downside betas have higher expected returns. Crash risk has also been empirically
investigated using options data. While Santa-Clara and Yan (2010) find that ag-
gregate market jump risk may be responsible for as much as 40% of te equity risk
premium (as opposed to diffusion risk or volatility which explains the remainder
of the premium), Cremers et al. (2015) find that there is also a cross sectional
premium for stocks with a high exposure to aggregate market jump risk.

However, one of the main assumptions for these models is that investors know
the true parameters that define a stock’s exposure to that source of risk. This
assumption is especially relevant for the case of crash or downside risk, where it
is empirically challenging to determine an asset’s exposure to this kind of risk
ex-ante. In fact, we find that when sorting stocks into portfolios using ex-ante
measures of crash risk, we are unable to find any significant dispersion in the crash
risk of these portfolios, making it especially puzzling that there is empirical evi-
dence finding a pricing relationship between crash risk exposure and asset returns.
Cremers et al. (2015) briefly address this issue when they find that despite the
cross sectional premiums obtained when sorting stocks according to their ex-post
risk loadings on aggregate jump risk, they no longer find a premium when sort-
ing using ex-ante measures such as past exposures or forecasts using additional
individual firm data.

While crash risk may be an important source of risk, since the introduction
of the capital asset pricing model (CAPM) by Sharpe (1964), Lintner (1965),
Black (1972) and others, there has been a wide literature extending this model to
settings where asset prices are also affected by factors other than crash risk. Our
paper is related to many of these extensions since they all require that investors
know an asset’s risk loading on a certain source of risk ex-ante, and just like crash
risk, it is not at all clear that risk loadings for additional factors are easy for
investors to know ex-ante. For this reason we also investigate the betas from the
popular CAPM extension, the Fama-French 3 factor model introduced by Fama
and French (1992). In addition to downside beta, we also look at the SMB and
HML betas from this model.

This paper is organized as follows, in section 2 we develop our theoretical
model to illustrate how parameter uncertainty around asset correlations affects
asset prices, section 3 we investigate beta predictability, in section 4 we compare
asset pricing results when using contemporaneous and predictive beta measures,
in section 5 we analyze investors’ optimal demands and in section 6 we conclude.
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2 Ambiguity aversion and correlation uncertainty

There are only few papers that look at ambiguity aversion in relation to portfolio
choice, most papers focus on the uncertainty of expected returns on assets. The
uncertainty of expected returns of assets has been shown to provide theoretical
explanations such as low participation in equity markets (Easley and O’Hara
(2009)) and home bias (Maccheroni et al. (2013)). Maenhout (2004) and Gollier
(2011) have also shown how ambiguity aversion and model uncertainty can account
for a high equity premium while decreasing demands for equities. However these
do not directly look at how ambiguity aversion can affect the cross section of asset
prices.

One paper comes close, Garlappi et al. (2007) use ambiguity aversion around
mean estimates of stocks in order to investigate optimal ways of constructing
portfolios. This paper modifies the standard mean variance problem to include
ambiguity aversion around stock means in order to improve portfolio decisions.
However, Garlappi et al. (2007) do not focus on how this might affect asset prices.
Furthermore, they only look at ambiguity aversion for the first moment of stock
distributions.

However, many of the risk factors that explain the cross section of stock returns
arise from hedging demands. Hedging demands come from investors’ exposure
to a variety of risks that are exogenous to the market. One example we focus
on is crash risk. Investors may be exposed to crash risk due to a variety of
reasons, such as lower worse investment opportunities or higher risk of income
loss (via unemployment for example). Assets positively correlated with these
negative outcomes are then more risky, since they provide investors with bad
outcomes when they face bad states. Assets that are less correlated however can
provide some form of insurance against these exogenous risks. The correlations
and covariances of returns are then parameters of large importance regarding
return distributions. However, these are unobservable parameters that investors
have to estimate and that may vary over time. If this is the case, investors
should care about how well they can estimate and predict the covariance structure
of assets over the period in which they invest in. To model this, we introduce
investors that have ambiguity aversion with respect to the covariance of assets
and exogenous risks.

In order to better understand how uncertainty affects asset prices, we develop
a simple model with exogenous untradable risks. This will be our reduced form
way of introducing hedging demands for the representative investor. Another
important ingredient in this model is the introduction of ambiguity aversion. We
model ambiguity aversion as in Garlappi et al. (2007), where agents who are
uncertain about a parameter in their utility function, choose a value for this
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parameter within a certain confidence interval that minimizes their utility. When
choosing their portfolio, given a certain confidence interval, agents choose the
worst case scenario within that interval.

This model is our first step in order to understand how the predictability of risk
may affect the premium associated with that risk. In the asset pricing literature,
many of the asset pricing models that predict cross sectional differences in assets’
expected returns motivate this as a result of asset hedging demands 3. This
demand arises from a group of risk averse investors that are exposed to some non
aggregate market risk, using the available assets at their disposable to hedge these
risks to a certain degree.

One possible example is that some investors might have strong preferences
to hedge crash risk. These could be large institutional investors such as banks,
pension funds or insurance companies that may be subject to regulatory pressure
that might make them avoid certain risky assets. In order to avoid regulatory
pressures, institutional investors may by willing hedge themselves against crash
risk going short assets that are highly exposed to crashes. For the case of stocks,
in practice this would mean these investors could short a zero cost portfolio that
loads on crash risk, while investors who care less about crash risk could be willing
to buy these assets, receiving some compensation for bearing this extra risk.

However, in an environment where exposure to crash risk is time-varying and
unobservable, we argue that an agent’s ability to forecast this exposure is also
important to determine prices. In this specific example, it is hard to tell which
stocks are exposed to crash risk ex-ante. Cremers et al. (2015) for example show
that stock loadings on the JUMP factor, a factor that proxies for the risk of
jumps in market returns, are hard to predict. In this situation, agents might not
be willing to give up as much return for assets that they are uncertain about
regarding their risk hedging potential. Our model will explore how uncertainty
around the correlation between an asset and an exogenous risk, i.e. uncertainty
about the hedging potential, affects asset prices compared to a model where agents
observe the true correlations.

Given a myriad of models that predict cross sectional differences in asset ex-
pected returns generated not only by their market beta but also investor’s hedging
demands, we develop a model that analyses how uncertainty around the correla-
tion of traded assets and a given exogenous risk affects asset prices.

3Any model that uses factors motivated by the Merton (1973) ICAPM model would fit this description.
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2.1 Market model with a zero net supply portfolio

2.1.1 Assets

In our model, economic agents can trade 2 risky assets, the market portfolio,
M, and a hedging portfolio, H. They can also have exposure to a non-traded
asset or exogenous risk, Q. In total, there are 3 risks M, H and Q, where M and
H are traded. The excess returns of the 3 risky assets have the following joint
distributions:

rt+1 =

rM,t+1

rH,t+1

rQ,t+1

 ∼ N
µMµH

µQ

 ,
σ2

M 0 0
0 σ2

H σQH
0 σQH σ2

Q

 , (1)

where we can alternatively write σQH as σQH = σQσHρ, where ρ is the corre-
lation coefficient between Q and H.

The market asset must be in positive net supply. Since this is the only traded
asset in positive supply, the total market capitalization must be equal to the total
traded wealth in the economy, WT , which we normalize to 1. The hedging portfolio
is in zero net supply, which means the wealth all agents invest in this asset must
be zero. Asset H is orthogonal to the market, while having some correlation ρ to
Q. We can think of H as a self financing market neutral portfolio of assets that
has some positive exposure to the exogenous risk, while the market as a whole is
independent of this exogenous risk. In this case, investing in or shorting H can be
seen as a deviation from the market portfolio. Given these 3 assets, the expected
returns of M and H will be endogenous to the model, while the expected return
of Q and the variance-covariance matrix of the risky assets is given.

2.1.2 Agents

In this model, we have 2 types of agents, j ∈ {A,B}, with risk aversion γj where
agent A is not exposed to exogenous risks, wA

Q = 0, while agent B has a positive

exposure to the exogenous risk, wB
Q > 0. Furthermore, agents of type A and B

detain all the wealth in the economy and each own a relative share of wealth Wj.
They must invest a portion of their wealth in each of the 2 traded assets: the
market asset M, and the hedge asset H. Since we write everything in terms of
returns in excess of the risk free rate, these weights don’t need to add to 1. Excess
portfolio returns are then given by:

rjp,t+1 = wj
MrM,t+1 + wj

HrH,t+1 + wj
QrQ,t+1, (2)
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with expected return

E(rjp,t+1) = wj
MµM + wj

HµH + wj
QµQ, (3)

and variance

V ar(rjp,t+1) = (wj
M)2σ2

M + (wj
H)2σ2

H + (wj
Q)2σ2

Q + 2wj
Hw

j
QσHσQρ. (4)

Finally we introduce the notion of ambiguity aversion around the ρ parameter,
the correlation coefficient between the hedge asset, H, and the exogenous risk, Q.
We model this as in Garlappi et al. (2007), where in our case agent B doesn’t
know the true value of ρ, but has a point estimate, ρ̂, and a confidence interval
such that with some confidence level it is known that ρ ∈ [ρ̂−η; ρ̂+η]. Given this
interval, an ambiguity averse agent will then choose an estimate for ρ within this
confidence interval such that it minimizes the agent’s utility, i.e. the agent makes
a decision on the worst case scenario of ρ. This is the same notion of ambiguity
aversion preferences of Gilboa and Schmeidler (1989), where agents maximize their
utility over the worst case scenario for the parameter sensitive ambiguity aversion.
In our framework, a higher η can either represent more ambiguity aversion or a
higher standard error of the estimate. However this does not alter our conclusions,
if we consider a constant ambiguity aversion, higher η means higher correlation
uncertainty. Furthermore, ρ will only enter agent B’s utility since it is the only
agent exposed to exogenous risks, therefore ambiguity aversion is only relevant for
agent B.

In our model, each agent wants to maximize their next period expected utility
which we model using a quadratic utility function. Summarizing this information
and inserting it into our agents’ quadratic preferences, the objective functions for
agent A is then given by

max
{wA

M ,w
A
H}
UA = wA

MµM + wA
HµH −

γA

2
((wA

M)2σ2
M + (wA

H)2σ2
H) (5)

and agent B by

max
{wB

M ,w
B
H}

min
{ρ}

UB = wB
MµM + wB

HµH + wQµQ

− γB

2
((wB

M)2σ2
M + (wB

H)2σ2
H + (wQ)2σ2

Q + 2wB
HwQσHσQρ).

s.t. ρ ≤ ρ̂+ η

ρ ≥ ρ̂− η

(6)
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For simplicity, since wA
Q = 0, we redefine wQ ≡ wB

Q.

2.1.3 Equilibrium conditions

Since we consider both agents to be price takers, market equilibrium is achieved
once both agents optimally allocate to the available assets given their current
prices, µM and µH . We start by solving the model for the case without uncertainty,
where ρ̂ = ρ and η = 0. The partial equilibrium demands of each investor are
described in the proposition that follows.

Proposition 1. If there is no uncertainty such that ρ̂ = ρ and η = 0, then the
optimal partial equilibrium demands for agents A and B are given by

{
wA∗
M = µM

γAσ2
M

wA∗
H = µH

γAσ2
H

(7)

and for B,

{
wB∗
M = µM

γBσ2
M

wB∗
H = µH

γBσ2
H
− wQσHσQρ

σ2
H

(8)

Proof: See appendix.

In full equilibrium, the markets for both tradable assets have to clear. This
means the total wealth allocated to the market portfolio has to add up to a positive
amount which we normalize to 1. On the other hand, the total wealth invested in
the hedge asset should be zero since it is in zero net supply. These two additional
conditions can be written as:

WAw
A
M +WBw

B
M = WT = 1, (9)

and

WAw
A
H +WBw

B
H = 0. (10)

Solving for these for these conditions, yields the propositions that follow.
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Proposition 2. If there is no uncertainty such that ρ̂ = ρ and η = 0, then the
market premium and hedge asset premiums are given by

µM = γ̄σ2
M

µH = γ̄WBwQσHσQρ
(11)

where γ̄ is the wealth weighted harmonic average of the risk aversion coeffi-
cients of both agents.

Proof: See appendix.

Since the market is uncorrelated to either the background risk or the hedge
asset, the expected return of the market depends on the level of market risk and
the average risk aversion level of the agents.

The premium of the hedge asset however, is driven by the average risk aversion,
the share of wealth of the type B agent, her exposure to the background risk and
the covariance between the hedge asset and the background risk. From here, we
can see that part of the premium is driven by the hedging demand of agent B,
where the agent’s available wealth and exposure to the background risk increase
the premium in absolute terms. The other important component is the correlation
of the hedge asset and the untradable risk. In absolute terms, higher correlations
result in higher premiums, while the sign of the premium will depend on whether
the correlation is negative or positive. It is important to see that a correlation of
zero would make the premium disappear.

The next step involves adding ambiguity aversion. For this we return to agent
B’s objective function in equation (6). While in the previous case agent B is
assumed to know ρ, in this case the agent observes an estimate, ρ̂ and a confidence
interval such that ρ ∈ [ρ̂− η; ρ̂+ η] with an certain degree of confidence. The size
of the interval, η, will then depend on both the degree of confidence required by
the agent as well as the standard error of the estimate.

In this setup, ambiguity aversion shows up with the agent choosing a ρ∗ within
that interval that minimizes the agent’s utility, as opposed to using the observed
estimate ρ̂. In order to obtain the equilibrium under ambiguity aversion, we
now now solve the equilibrium conditions as before, with the difference that the
objective function for agent B is now different. While the demands of agent A and
the demand for the market asset of agent B remain the same, under ambiguity
aversion, the demand of agent B for the hedge asset will now by given by the
proposition that follows.

Proposition 3. Under ambiguity aversion, the partial equilibrium demand of
agent B for the hedge asset and the optimal ρ will be given by the following ex-
pressions.
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ρ∗ =


ρ̂+ η , ρ̂ < −η
0 , ρ̂− η ≤ 0 ≤ ρ̂+ η

ρ̂− η , ρ̂ > η

(12)

wB∗
H =



µH
γBσ2

H

− wQσHσQ(ρ̂+ η)

σ2
H

, ρ̂ < −η

0 , ρ̂− η ≤ 0 ≤ ρ̂+ η

µH
γBσ2

H

− wQσHσQ(ρ̂− η)

σ2
H

, ρ̂ > η

(13)

The partial equilibriums demands of agent A remain unchanged as do those of
agent B for the market.

Proof: See appendix.

From the proposition above, we can see that the demand for the hedge asset
from the agent exposed to the exogenous risk shrinks towards zero if uncertainty
around the correlation, η, is high. This comes as a result from the agent’s am-
biguity aversion. The ambiguity aversion drives agent B to choose the ρ∗ within
a the given confidence interval that minimizes the agent’s utility and as we can
see from the proposition, this adjustment implies a smaller ρ∗ in absolute terms.
If the observed correlation is above zero, agent B will revise that estimate and
shrink it towards zero and consider the correlation at the lower boundary of the
confidence interval. The opposite is true when the estimate is below zero, agent
B will revise the correlation estimate at the upper bound of the interval. Finally,
when the estimate is close enough to zero (zero is within the confidence interval),
then the agent will consider a correlation of zero.

Intuitively, this means that whenever the confidence interval for ρ̂ includes
zero, an investor will make decisions based on the worst case scenario, which
happens when ρ is zero and the investor is unable to hedge against exogenous
risk. If this is not the case, then the correlation considered for agent B’s optimal
portfolio demands is always lower in absolute terms than what is observed. This
means the investor makes decisions considering the case where the hedge asset
provides less hedging potential due to its lower correlation in absolute terms with
the exogenous risk. These demands lead to the equilibrium returns described in
the proposition below.

Proposition 4. By inserting the optimal demands of both agents into the market
clearing conditions from equation (10), we obtain the following equilibrium returns
for the hedge asset.
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µH =


γ̄WBwQσHσQ(ρ̂+ η) , ρ̂ < −η
0 , ρ̂− η ≤ 0 ≤ ρ̂+ η

γ̄WBwQσHσQ(ρ̂− η) , ρ̂ > η

(14)

Proof: See appendix.

From this proposition, we that the ambiguity aversion of agent B will drive the
risk premium of the hedge asset towards zero in absolute terms. Notice that the
hedge asset premium is linear in ρ∗, this means that agent B’s ambiguity about the
hedge asset’s hedging potential is what drives the absolute returns of the hedging
asset to be smaller. Investors not exposed exogenous risk will in turn want less of
the hedge asset due to the asset’s lower return.

We can clearly see this in Figure 1. There we calibrate the model and plot the
optimal ρ of agent B and the expected returns of the hedge asset in a model with
and without ambiguity aversion against the observed ρ̂. In Panel B we can see
how the agent shrinks the optimal correlation towards zero. This effect is larger
as we move away from zero and is solely dependent on the size of the confidence
interval. When looking at the Panels C where we plot the equilibrium returns and
D, where we plot the absolute equilibrium returns we can see a similar effect in
equilibrium returns. In absolute terms returns decrease compared to the model
without ambiguity aversion the further the observed ρ̂ is from zero.

While this model provides a simplified way for us to think about uncertainty
in risk, we may also infer what the results might imply more generally for the
cross section of stocks. In practice these results suggest that in a conditional multi
factor pricing model where beta loading of individual stocks are time-varying, it is
important for investors to accurately predict future beta loadings. The implication
here is that when betas are hard to predict and have large forecast errors, then the
price of the respective factors should be lower in absolute terms. If it is hard to
form portfolios exposed to beta risks ex-ante, then an investor’s optimal demand
for such a portfolio should be small.

It is easy to see why we need ambiguity aversion for uncertainty about the
correlation to matter. If we were to set η to zero, this would provide us with
a result similar to as if there was no uncertainty. Investors, would simply base
their decisions on ρ̂, without correcting for the fact that it is an estimate and
not the true correlation, leading to the same results as in propositions 1 and 2.
Furthermore, it is important to note that in this model, we only study the impacts
of uncertainty covariances between assets and non-market risks, that is, betas of
factors other than the market. In fact, Gollier (2013) suggests that market beta
uncertainty of an asset increases risk premiums. For this reason we do not intend
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to focus on market betas, instead we focus on betas that are extensions of the
CAPM. Intuitively speaking, this arises from the fact that the market is in positive
net supply while self self financing portfolios that provide hedges are in zero net
supply, so uncertainty works differently in this case.

3 Predicting Betas

In order to show the importance of properly estimating risk factors for assets we
construct a dataset using CRSP daily common stock returns and COMPUSTAT
yearly firm accounting data starting in 1963 through 2016, similar to those of
Ang et al. (2006a) and Cremers et al. (2015). We follow most of the literature in
selecting NYSE, AMEX and NASDAQ stocks with CRSP share codes 10 and 11.
In order to estimate betas, we follow Cremers et al. (2015) using daily data over
the course of a year in order to estimate a stock’s yearly beta every month. From
our sample, we exclude stocks that don’t have corresponding accounting data on
COMPUSTAT. We also exclude stocks that at the beginning of each year have
prices lower than 5 USD, to avoid stocks that are illiquid or may have extreme
returns due to their low prices. Furthermore, when estimating betas, we consider
that stocks that have more than 5 missing daily returns over the course of the one
year window to be missing observations. We also follow Fama and French (1993)
by removing financial firms from the sample as firm fundamental variables such
as the book to market ratio and leverage have different interpretations for these
firms. Finally, we split our sample at the beginning of every year into the 20%
largest firms and 80% smallest firms by market cap. While we find that predicting
betas is quite difficult, this problem is smaller for larger firms where there is likely
less noise in returns. While our results will focus on the sample of large stocks, in
a separate appendix we also provide the results for the sample of the 80% smallest
stocks, where we find similar results.

3.1 Betas

In this paper, we look at four different betas. We look at the market beta, down-
side beta from Ang et al. (2006a), and SMB and HML betas from Fama and
French (1993). Since we are using daily returns and there are several smaller illiq-
uid stocks in our sample, we use the Dimson (1979) correction for non-synchronous
trading. For the CAPM beta, we regress stock returns on the market portfolio of
the same day and the previous day as in equation (15). The final beta estimate
is the sum of β1 and β2.
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ri,t = αi + β1rm,t + β2rm,t−1 + ei,t (15)

We use the relative downside beta (Beta DR henceforth) as in Ang et al.
(2006a) because standard downside beta is highly correlated to the standard mar-
ket beta. What we call standard downside beta, is calculated as the market beta
where the estimation sample is restricted to only include the days in which the
market return was below its average during the estimation window. In our setup,
this means we estimate a stock’s market beta using the only the days in which
the stock market had a return below its average over the past year.

βDownsidei =
Cov(ri,t, rm,t|rm,t < µm)

V ar(rm,t|rm,t <]µm)
(16)

However, since by construction this measure includes half of the sample used to
estimate a normal market beta, these two measures are highly correlated. Since we
only want to capture the downside risk component, we follow Ang et al. (2006a)
and we subtract the market beta from the standard downside beta in order to
obtain a stock’s relative downside beta. Ang et al. (2006a) show that stocks that
load on Beta DR risk don’t necessarily load on market beta risk, however the
same is not true for standard downside beta.

In order to compute Beta DR with the Dimson correction, we first have to
calculate the standard downside beta. To do that, we run the regression from
equation (15), however from the yearly return window, we drop all observations
where the market performed better than the average market return for that one
year window. Therefore, we only perform the regression on the observations where
the market had a lower return than the average return of the estimation window.
The downside beta is then the sum of β1 and β2, and in order to obtain beta DR,
we subtract the market beta from this.

For SMB and HML betas we perform a similar operation to the CAPM beta
regression, in addition to the market, we regress on the factor return on the same
day as well as the previous day and add both coefficients β3 and β4 from equation
(17) in order to get the final factor estimate.

ri,t = αi + β1rm,t + β2rm,t−1 + β3rk,t + β4rk,t−1 + ei,t (17)
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3.2 Beta Prediction

While in many cross sectional studies, researchers have looked at the relationship
between risk and returns contemporaneously4, we argue that risk exposures should
only be priced if they are predictable to a certain degree. Indeed, Cremers et al.
(2015) find the puzzling result that despite the fact that stocks exposed to jump
risk have higher returns, they are not able to identify these stocks ex-ante. The
main focus of this paper is to then study the implications of the ability to forecast
risk and the relationship with returns and investor demands.

Instead of using contemporaneous risk factors, we want to draw a relationship
between expected risk and expected return. One way is to simply look at past
risk measures and expected returns, however, we can do better than simply use
past risk measures. Instead we can try and predict future risk exposures using
firm fundamental data. In order to forecast next period betas with information
that is available ex-ante, we largely follow Boyer et al. (2010).

In order to forecast betas, we estimate the following cross-sectional regression
every month:

βi,t+12 = δ0 + δ1βi,t + δ2Xi,t + ei,t+12, (18)

where βi,t represents the most recently estimated beta, which uses the past 12
months of data, Xi,t is a vector of predictive variables. We use these variables to
forecast betas over the next 12 months which means there is no overlap between
the estimation of the betas on the right and left hand sides. To reduce the influence
of outliers, we winsorize the bottom and top 2.5th percentiles of observations every
month. Furthermore, to help us in terms of interpretation, we also standardize
the right hand side variables every month.

Our goal is to use the latest available betas along with firm fundamental data in
order to forecast betas over the next one year. Besides using betas estimated in the
past year, we also use a set of fundamental variables constructed with data from
CRSP and COMPUSTAT. Using CRSP returns we also estimate coskewness and
idiosyncratic volatility over the past year. Like the betas, we estimate coskewness
and idiosyncratic volatility every month over the past 1 year window. Using the
last available 1 year of daily data, we estimate coskewness as:

CSKi =
E[(ri − µi).(rm − µm)2]√

V ar(ri).V ar(rm)
, (19)

4Ang et al. (2006a) and Cremers et al. (2015) for example.
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following Harvey and Siddique (2000), where µi and µm are the stock i’s and the
market means over the past year using daily data. Idiosyncratic volatility is also
calculated using daily returns stock excess returns over the past year. To estimate
the idiosyncratic volatility, we calculate the volatility of daily excess returns in
excess of the market defined as:

εi,t = ri,t − βMi rm,t, (20)

where βMi is the market beta of stock i estimated over the past year, as explained
in the previous section.

We also use firm fundamental data in order to predict future betas. From
CRSP, we extract firm market capitalizations at the end of each month. We then
use COMPUSTAT yearly accounting data to construct additional variables. Like
in Fama and French (1993), we are conservative and assume that data from fiscal
year t is only available starting July from calendar year t and is used every month
until June from calendar year t + 1. We use the Book-to-market (BTM) ratio,
calculated as the ratio of last available book equity to the end of month market
capitalization. Return on equity (ROE) is calculated as the ratio of net income to
book equity. We follow Campbell et al. (2008) and calculate leverage as the ratio
of book debt to the sum of book debt and market capitalization. Finally, we use
Fama and French (1996) industry definitions to group SIC codes into 12 industry
dummies.

Table 1 shows us the average coefficients of these monthly cross sectional re-
gressions, with Fama and MacBeth (1973) standard errors for the average coef-
ficients. Due to the overlapping windows of each cross section, we also correct
standard errors using 12 Newey-West lags.

[insert Table 1 about here]

The main takeaways from these regressions are that it seems quite difficult
to predict betas out of sample. Our prediction model seems to explain market
betas quite well when compared to Beta DR, Beta SMB and Beta HML given the
higher average adjustedR2’s. This seems to come mostly from the fact that market
betas are more persistent than the other betas as we can see from the lagged beta
coefficients. Past Beta DR although significant, has a coefficient close to zero
meaning that it is a poor predictor of future Beta DR. The SMB beta is still quite
persistent when compared to beta HML and Beta DR, however less persistent
than market Beta, however this is not significant across all specifications. Beta
HML on the other hand seems to oscillate given a large negative coefficient on the
lagged beta. This suggests that stocks with high HML Beta today are likely to
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have the lowest betas in the cross section over the following year. Furthermore,
size and BTM seem to be important predictors of Beta SMB and Beta HML
respectively which is not surprising given the way the factors are constructed.

To evaluate how well each model does in forecasting future betas, we also
calculate the average root mean square errors that the forecasts from this model
produce in the following way:

RMSE =

∑T
t=1

√∑N
i=1 (βi,t − E[βi,t])

2 /Nt

T
, (21)

where Nt is the number of stocks in a given month, βt is the realized beta over the
past 12 months, and E[βt] is the out of sample forecast beta generated from the
most average recent δ coefficients from equation (18) and most recent available
data prior the beta estimation window. Since predictions are out of sample, an
investor can use these betas to make investment decisions.

Along with the lagged beta coefficients, the root mean square errors of our
forecasts highlight how unstable these betas can be over time, and that they
are relatively hard to predict. While we start by looking at predictability using
only lagged betas, we can see that the models under the full specification using
characteristics and industry dummies do a slightly better job in predicting future
betas. We will therefore use betas estimated from the fully specified model later
on in this paper and refer to them as forecast betas.

It is important to note that the betas we look at have different cross sectional
distributions so the RMSE’s are not directly comparable across different betas.
However, in the following section, we explain how we analyze long short portfolios
constructed using beta forecasts, giving us a better idea of how useful these can
be in a way that is somewhat comparable across betas.

4 The Pricing of Contemporaneous and Predic-
tive Betas

Our analysis is focused on whether risks are priced in a multifactor model of the
following form:

Et(r
i
t+1) = βMi,tλm,t +

K∑
k=1

βki,tλk,t, (22)
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where βMi,t and λm,t represent a stock’s market beta and the price of market risk

respectively and βki,t and λk,t represent additional stock betas and the respective
prices of risk. The betas in this equation, are the asset betas conditional on the
information available at time t, which cannot be perfectly observed by an econo-
metrician. To deal with this issue, the finance literature has generally followed
three distinct approaches. The first is to use the realizations of beta at time t+ 1,
which corresponds to the same window used to calculate returns. The second uses
pre-ranking betas, beta estimates that are available at time t, that is, estimated
before time t + 1. The underlying assumption is that current betas are good
proxies for the conditional covariances of assets. A third and final approach is
to forecast betas using information available at time t, such as firm accounting
data and firm specific risk measures. Researchers resort to this alternative if they
believe that betas at time t do not accurately reflect the true conditional betas.
The first method, which relies on realizations of betas, we call contemporaneous
betas since they are estimated in the same window as returns, while the second
and third we call predictive since they rely exclusively on information available
before the returns of the following period are realized.

We are particularly interested in predictive betas. From an investor’s point of
view, these are the betas they are able to use in order to make informed investment
decisions, while contemporaneous betas are only available ex-post. We specifically
focus on the relationship between βki,t and expected returns. While our model
suggests that expected betas matter for the pricing relationship, so does the degree
of certainty we have around this estimate. In our model, we document that
when correlations between an asset and a risk factor are not observed but instead
estimated with a certain degree of uncertainty, then the price of risk should be
smaller in absolute terms. In practical terms, this suggests that if investors are
unable to predict future betas associated with a certain risk factor k, then this
factor should not be priced in the cross section of stocks.

4.1 Portfolio Sorts

To investigate these relationships, our first step to identify whether betas are
priced is to create quintile portfolios based upon realized betas. For each of the
betas (Beta DR, Beta SMB and Beta HML), we construct portfolios based on
realized, predicted and pre-ranking beta sorts. For the realized beta sorts, every
month, we rank stocks according to their estimated betas over the past 12 months
and then use these betas to group stocks into value weighted quintile portfolios.
Using these portfolio formations, we look at their performance over the same 12
month window used to estimate the betas.

In Table 2, we can see the results from this analysis in the realized beta panels.
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While for Beta DR and market beta there is a contemporaneous relationship
between beta risk and return as in Ang et al. (2006a), the same is not true for SMB
and HML betas. When forming a long-short portfolio that goes long the high beta
quintile portfolio and shorts the low beta portfolio, we find that portfolios sorted
on Beta DR show positively significant returns even when adjusted for market
risk, given the high and positively significant CAPM alpha. Furthermore, returns
increase monotonically every quintile. However, we don’t find this monotonic
pattern for portfolios formed on realized SMB and HML betas, with the addition
that the long short portfolios constructed on these two measures have returns that
are not statistically significant from zero over the sample.

[insert Table 2 about here]

However, we are interested in the relationship between expected betas and
returns. In order to do this, we use two alternative measures of expected betas.
Instead of comparing betas and returns over the same window, we construct port-
folios in two different ways. We first use pre-ranking betas. In this case, we use
the direct beta estimated made over the past 12 months to form portfolios and
measure the returns of these portfolios over the next 12pre-ranking betas, we use
predicted betas generated from our prediction model in the previous section in
order to form value weighted portfolios. The predictions are made using informa-
tion available over the past 12 months, and we then form quintile portfolios based
on these predictions and measure their returns over the following 12 months.

While the portfolios formed on realized betas are created with information
that is not available ex-ante, the information to construct portfolios formed using
pre-ranking and predicted betas is. This means that from an investor’s point of
view, realized beta portfolios are not investable, as opposed to the predicted and
pre-ranking betas portfolios which are fully investable.

Unlike when using realized betas, we no longer find a monotonic relationship
between portfolio betas and returns, and the long-short portfolio displays returns
that are not significantly different than zero. We further highlight that the disper-
sion of realized Beta DR in the quintile portfolios is much smaller when compared
the realized beta sorts. While the realized Beta DR of the long-short portfolio is
positive and significant, it is much smaller than when using realized betas. Al-
together, these results show that it is difficult for an investor to use pre-ranking
betas in order to gain exposure to Beta DR risk and reap the potential premium
identified in the realized beta sorts. Similar results are found when using predicted
betas instead, however, when using predicted betas, we find a positively signifi-
cant yearly alpha of 4.37%. While this might suggest that our prediction model
is performing well, we prefer to interpret this with caution for two reasons. First,
the dispersion in Beta DR among the 5 portfolios is similar to the pre-ranking

19



beta, meaning that our prediction model still struggles to identify which stocks
are exposed to Beta DR risk ex-post. This raises a second concern, given that the
realized Beta DR of the portfolios sorted on predicted betas are quite similar, the
return differential might be due to other factors. In fact, our prediction model
uses several variables that have been associated in the literature to explaining the
cross section of stock returns5. Since the predicted betas are linear combinations
of these, our concern is that our results come from the fact that we are indirectly
sorting on variables such as idiosyncratic volatility.

Regarding SMB and HML betas, our results are different than for Beta DR. For
both of these betas, there is a large dispersion in portfolio realized betas, whether
sorting on pre-ranking or predicted betas, with the betas of the long short portfolio
being positive and significant. However results on the returns premiums when
comparing the high and low beta portfolios are mixed. For SMB beta, the long-
short portfolios fail to capture positively significant alphas. While we note that
when using predicted SMB beta there is a positively significant premium when
looking at raw returns, once we control for market risk, this premium disappears.
As for HML beta, the premium of the long-short portfolios seem to be positive
but insignificant for pre-ranking beta. Regarding predicted HML beta, there
seems to be a positively significant CAPM alpha, however the same caution in
interpretation applies as for Beta DR.

To further investigate the predictability of betas, we also analyze the time-
series distribution of the realized betas of the long-short portfolios constructed
using pre-ranking and predicted betas. The objective here is to see whether we
can use past data to reliably gain exposure to these beta risks. For each beta,
we have a set of overlapping long-short portfolios, formed every month with a 1
year investor horizon over our whole sample. We can look at the distribution of
these betas over the sample to construct confidence intervals to investigate what
exposure to each beta can be expected for a given year.

From Table 3, we can see that depending on the required confidence interval,
an investor is not guaranteed positive exposure to beta risk. For the case of Beta
DR, whether using pre-ranking or predicted betas, investors may face negative
downside betas when investing in a long-short portfolio, even when requiring a
90% confidence interval. This means that for this confidence level, this portfolio
could have the opposite exposure of what an investor would aim to have over
a given year. If an investor hoping to hedge against downside risk would short
this portfolio, this means that there is a considerable chance that they would in
fact get even more exposure to downside risk. Furthermore, we note that the

5Fama and French (1992) find size and book to market explain the cross section of returns, while Harvey and
Siddique (2000) and Ang et al. (2006b) find that coskewness and idiosyncratic volatility explain the cross section
of stock returns respectively.
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prediction model does little to shorten these confidence intervals.
For SMB and HML betas, the prediction model somewhat helps achieving the

desired positive exposure when considering the 99% confidence interval meaning
that the prediction model has some power to reduce some of the more extreme
observations. However, at confidence intervals of 95% or lower, predicted and
pre-ranking betas both succeed in providing investors investing in a long-short
portfolio with positive exposures to these risks. Nevertheless, we noted that while
investors may be able to achieve positive risk exposures with a certain degree of
confidence, the confidence intervals are also very wide. While this suggests that
investors that wish to be exposed to SMB or HML risks may be able to do so,
controlling the amount of exposure however may be much harder.

[insert Table 3 about here]

Drawing from our theoretical framework, these large beta confidence intervals
should play a role in the pricing of these risks. These empirical results suggest
that while it may be possible for investors to use the stock market to take care
of their hedging needs, there is a high degree of uncertainty to this. The amount
of uncertainty should be tied to the size of these premiums. If stocks are unable
to reliably satisfy the hedging needs of investors, then risks that arise from these
hedging demands should carry a lower price. These results are in line with the low
R2 and high RMSE of the prediction models from Table 1, as well as the small
dispersion in betas of the pre-ranking and predicted beta portfolios. Furthermore,
we can see in the descriptive statistics of Table 4, that Beta DR, SMB and HML
all have very low average autocorrelations across stocks, which provides further
evidence on the unpredictability of these betas.

4.2 Pricing Regressions

In this section, we further investigate the pricing relationship between betas and
returns by estimating cross sectional regressions. We use Fama and MacBeth
(1973) regressions to estimate the risk prices attached to realized betas and com-
pare them to those when using predicted betas. Table 4 shows the summary
statistics of the variables used in these regressions.

[insert Table 4 about here]

These allow us to better interpret the economic significance of some of our
results since in many cases our regressions our run using standardized variables,
so that we can compare results across different betas. Furthermore, we can also
get a better idea of how hard in can be to predict future betas. Looking at
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panel B from the descriptive statistics, we can see that the the average time-series
autocorrelation for stock betas seems to be very low.

In order to quantify the prices for the beta risks, the general specification of
the regression that we estimate in Panel A of Table 5 is the following:

ri,t = λm,tβ
M
i,t +

K∑
k=1

λk,tβ
k
i,t + γtXi,t−1 + εi,t, (23)

where βMi,t and βki,t are the betas estimated over the same one year window as
ri,t, and Xi,t−1 is a vector of control variables. Our coefficients of interest are
the λk,t, the price of the non market beta risks. In Panels B and C, we run a
similar regression, however we replace realized betas with predicted betas, that
we estimated using information at t− 1. Since realized and predicted betas have
different cross sectional distributions, when running cross sectional regressions,
we standardize the right hand side variables for every period in order easily make
comparisons between the different betas. Furthermore, due to the way predicted
betas are constructed, we are not able in include controls for the asset pricing
regressions of predicted betas in Panel C. Since these betas are constructed using
linear combinations of these control variables, this results in collinearity problems
when estimating these regressions.

[insert Table 5 about here]

Here we wish to compare the coefficients in Panel A and to those of Panels
B and C. For Beta DR, we provide empirical evidence that predicted betas carry
a lower price of risk than the realized betas. When used alone (column 1 of
panels A, B and C), there is roughly a large reduction in the expected return
of a stock for an increase in one standard deviation of realized and predicted
beta. When using pre-ranking betas, Beta DR is not priced. Results for pre-
ranking Beta DR remain the same when adding controls, with the risk price
being insignificantly different than zero. However, Beta DR it is positively priced
when using predicted betas, albeit with a 33% reduction in the risk price when
compared to the contemporaneous betas in Panel A. However, this difference is
much smaller and almost negligible when adding other betas to the regression.
For Panel C, where Beta DR is regressed alone against returns is in line with the
results from Table 2, once we add additional betas to the regression, predicted beta
and realized betas seem to carry similar risk premiums. Still, the realized betas
seem to carry higher returns when looking at the specifications that include all
betas across Panels A and C. In Panel C column (7) for example, downside beta is
no longer different than zero at a 95% confidence level, whereas in Panel A for the
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same specification (column 10), downside beta seems is priced and significantly
different than zero.

In general these results paint a picture where betas that are available to in-
vestors at the investment date do not explain differences in expected returns across
stocks. If we combine this with the low predictability of Beta DR analyzed in the
previous sections, this is in line with our theoretical predictions, where unpre-
dictable betas should not be priced.

Results for Beta SMB and HML allow us to reach similar conclusions. While
the realized and pre-ranking betas seem to have little relationship with returns,
this changes once we use predicted betas. We should note however that these betas
also seem to be highly unstable, as shown in Tables 1 and 3. Especially for the case
of HML betas, results from Table 1 suggest that these betas oscillate a lot, since
stocks that have high HML betas seem to display much lower betas in the following
period and vice versa. However, we should still take results from predicted betas
with a grain of salt. As explained earlier, predicted betas are estimated from
variables that have been suggested in the literature to explain the cross section of
returns. Since we cannot use controls in Panel C due to multicollinearity issues,
we cannot rule out that the it is the combination of characteristics and not the
actual predicted betas that are explaining expected returns.

While the results for predicted betas in Panel C are not entirely clear, we find
that when using pre-ranking betas in Panel B, Beta DR, SMB and HML do not
seem to be priced. When looking at the predicted betas from Panel C, for Beta
DR, predicted betas seem to either have a lower premium or no premium at all,
whereas for SMB and HML there seems to be a premium as opposed to what we
observe in Panels A and B.

5 Beta portfolios from the investor’s perspective

Another prediction from our model comes from Proposition 3, where high beta
uncertainty should lead to lower partial equilibrium demands for the hedge asset.
Following Driessen and Maenhout (2007), we use a framework where we empir-
ically estimate the optimal weights to allocate to a set of assets for a CRRA
investor with varying degrees of risk aversion. We frame the problem so that the
investor has the choice of investing in the market portfolio and an additional long
short portfolio, which we call the hedge portfolio.

In our general setting, investors that want to maximize the utility expected
utility of their terminal wealth,
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max
αi

E [U (WT )] , (24)

where terminal wealth is given by

WT = W0 [Rf + αE (RE −Rf) + αHRH ] . (25)

Here i ∈ E,H, where E and H refer to returns and weights on the equity
market portfolio and the hedge portfolio respectively. The hedge portfolios we
investigate are the long-short portfolios we form in the previous section based on
downside, SMB and HML beta quintile sorts. In this analysis, we consider both
the portfolios formed on realized/contemporaneous betas as well the portfolios
formed predictively using pre-ranking and predicted betas.

To estimate the optimal weights, we construct portfolios with a yearly invest-
ment horizon at the start of every month as in the previous section. We then use
GMM to estimate the optimal unconditional weights. The moment conditions can
be extracted by taking the first order conditions of equation (24), which yield:

{
E [U ′ (WT ) (RE −Rf)] = 0

E [U ′ (WT ) (RH)] = 0
(26)

While this specification allows for several kinds of preferences, we use CRRA
preferences. This preference class is particularly appropriate for downside risk
since it is able to model concern with higher order moments regarding risk prefer-
ences. Linking back to our theoretical model, CRRA preferences penalize skewness
in returns, that is, CRRA investors dislike crashes. While in our model we write
this in the reduced form of a mean variance investor with an aversion to abstract
exogenous risk, here that exogenous risk comes from the CRRA preferences. The
dislike for negatively skewed returns (like crashes) of this type of investor, should
generate some hedging demand towards downside risk where we would expect
negative demands for the long-short portfolio of downside beta. However, if the
premium for crash risk is high, then the opposite may be true. Using CRRA
utility yields the following moment conditions:

{
E
[
W−γ

T (RE −Rf)
]

= 0

E
[
W−γ

T (RH)
]

= 0
. (27)
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[insert Table 6 about here]

We use GMM to estimate the weights that satisfy these moment conditions.
Since we have overlapping portfolios, we correct standard errors for autocorrela-
tion with Newey-West standard errors with 12 lags. In Table 6, we estimate the
optimal weights for CRRA investors with a level of risk aversion that ranges from
1 to 10, in 5 different settings which correspond to Panels A to E respectively:

A Only the market portfolio (model without RH and αH);

B The market portfolio and a hedge portfolio constructed using realized be-
tas (the same portfolios from Table 3). This portfolio is not investable in
practice.

C The market portfolio and a hedge portfolio constructed using the most recent
beta estimates at the formation date. This portfolio is investable in practice.

D The market portfolio and a hedge portfolio constructed using the most recent
beta forecasts. This portfolio is investable in practice.

E The market portfolio, a hedge portfolio formed using predicted downside
beta and SMB and HML portfolios as controls.

From Table 6, we find that the availability of the hedge portfolios, does not
make a CRRA investor shift away from the market portfolio, as optimal weights
on the market remain similar in panels B to E. This is consistent with the fact
that the hedge portfolios have very low betas and are almost orthogonal to the
market portfolio.

For hedge portfolios constructed with contemporaneous betas, we find that a
CRRA investor would only want invest in the relative downside beta risk, choosing
to have a positive exposure to this risk. Since CRRA preferences are sensitive to
higher order moments and downside risk, it is surprising that such an investor
would positively load on this risk, and even more the fact that this investor would
allocate more to to downside risk than to equity. This is possibly explained by
the fact that the premium for downside beta seems large when analyzed using
realized betas.

Regarding panels C, D and E, where the hedge portfolios are constructed using
available data and therefore fully investable, we find investors with CRRA prefer-
ences do not choose to allocate to these portfolios at levels statistically significant
than zero, except for the case of investors with very low risk aversion. Even for
downside beta, although when using a hedge portfolio constructed with predicted
betas (Panel D) we find positively significant weights, this result disappears once
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we include investable characteristic based portfolios into the investors available
choices. This suggests that predicted downside beta partly picking up value and
size anomalies, since our prediction is a linear combination of factors that include
these two variables.

Furthermore, we note that although in some cases weights are not statistically
significant, they are generally positive for all the hedge portfolios we test, at all
risk aversion levels. This is also surprising as all these portfolios are in zero net
supply, suggesting that we require investors with different kinds of preferences to
explain these sorts of cross sectional pricing differences across stocks.

6 Conclusion

In this paper we look at asset pricing from the perspective of an investor. While
in most of the asset pricing literature investors are assumed to observe asset risk
exposures, we find that this is far from a trivial task. While there have been steps
in the literature to improve beta estimates6, in a setting where risk is time-varying,
it is important to be able to accurately forecast betas or risk exposures for the
investment horizon over which the agent wants to invest their money.

We show this theoretically in a setting where investors are not able to observe
the exact joint distributions of the available assets. Investors willing to give up
return in order to reduce exposure to an exogenous risk, dislike not knowing
the joint distribution of the exogenous risk and the assets that could hedge it.
Intuitively it makes sense as investors are unsure of whether an asset provides
hedging potential or not, will be less willing to give up returns for this unsure
prospect.

We begin to empirically investigate the predictions from this model by quan-
tifying just how unpredictable downside, SMB and HML betas are. Using our
prediction best models, we indeed find that this a non trivial task and that we
obtain very high forecast errors. In practice this is translated into how difficult it
is to construct portfolios out of sample that go long in high beta stocks and short
in low beta stocks, that manage to achieve a consistent positive exposure to the
betas used for sorting.

We find that when using pre-ranking betas, there is no evidence for premiums
associated with downside, HML and SMB betas. However, when analyzing beta
forecasts from our prediction model, there is some pricing evidence for all three
betas. When looking at downside beta, while there is some evidence that forecast
downside betas are priced, the risk prices are somewhat smaller when compared
to the prices of realized bet downside beta, which is unobservable to investors.For

6See Vasicek (1973), Karolyi (1992) and Cosemans et al. (2015).
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SMB and HML betas, there is some evidence that predicted betas are priced,
however with the caveat that we are not able to properly control for characteris-
tics. Furthermore we find that when empirically modeling an investor’s portfolio
decision problem, there is little demand for portfolios based on risk exposures
estimated predictively.

Finally, we also find evidence that CRRA preferences are not enough to explain
the cross section of asset prices as they consistently overweight zero-net supply
portfolios constructed based on some of the documented anomalies in the asset
pricing literature. While it may be that economic agents with CRRA like pref-
erences exist, we require additional agents to take the other side of these trades.
This is not the main focus of our paper, so we leave this for future research.
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Appendix

A Proof Proposition 1 and 2

Proof. In order to reach equilibrium, two conditions need to be met: i) both
agents must choose their optimal portfolios and ii) the markets for assets M and
H need to clear. For a given levels of risk aversion, expected payoffs, variances
and covariances of the available assets, agents will trade and decide in equilibrium
the portion of their wealth, wj

M and wj
H , that they invest in each asset and at

what prices, µM and µH , they will trade them.
By taking derivatives of each agent’s utility with respect to each asset weight,

we obtain the optimal portfolios of both agent’s described in proposition 1.
Given the fixed supply of the market and hedge assets, the 2 agents will trade

them until supply is exhausted (supply = demand). Since the market asset is the
only asset in positive net supply, all wealth must be invested in asset M.

WAw
A
M +WBw

B
M = WT = 1 (28)

As for the hedge asset it is in zero net supply, so in aggregate, the total amount
of wealth in this economy invested in H is zero.

WAw
A
H +WBw

B
H = 0 (29)

Plugging in the optimal weights of each agent, we can solve the market clearing
conditions for the expected returns of M and H and obtain

µM = γ̄σ2
M (30)

µH = γ̄WBwQσHσQρ (31)

where γ̄ is the wealth weighted harmonic average of the risk aversion of the
two agents,

γ̄ =
∑
j∈A,B

(
Wj

γj

)−1

(32)
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If for example ρ is positive, agent B will want to short the hedge asset, and
agent A will take the other side of the trade since the asset is in zero net supply.
The premium arises from the fact that Agent B is risk averse and wants to reduce
the risk that comes from his untradable asset and will be willing to pay agent A
to bear the risk of holding the hedge asset. It is possible to write the demands
for each asset as a function of the exogenous variables and ρ∗ once we insert the
expressions for the equilibrium asset prices into equations (14) and (15). This
yields

{
wA∗
M = γ̄

γA

wA∗
H =

γ̄WBwQσQσHρ
∗

γAσ2
H

(33)

and for B,

{
wB∗
M = γ̄

γB

wB∗
H =

WBwQσQσHρ
∗

σ2
H

(
γ̄WB

γB − 1
) (34)

From here we can also see how the demands of the hedging asset are affected
by ρ. Agent A and Agent B will have demands with opposite signs since we can
show the term in brackets is smaller than zero.

γ̄WB

γB
− 1 < 0⇔ γAWB

γAWB + γBWA
< 1. (35)

If for example ρ is positive, agent B will want to short the hedge asset, and
agent A will take the other side of the trade since the asset is in zero net supply.
The premium arises from the fact that Agent B is risk averse and wants to reduce
the risk that comes from his untradable asset and will be willing to pay agent A
to bear the risk of holding the hedge asset.

B Proof Proposition 3 and 4

Since the agent B’s objective function is concave in wM and wH , and locally
compact in the weights and ρ, then we can use the minimax theorem as long as
the objective function is convex in ρ (Sion (1958)). Using this we can then re-write
the problem of agent B from equation (6) as:
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min
{ρ}

max
{wB

M ,w
B
H}
UB = rf + wB

MµM + wB
HµH + wQµQ

− γB

2

[
(wB

M)2σ2
M + (wB

H)2σ2
H + (wQ)2σ2

Q + 2wB
HwQσHσQρ

]
s.t. ρ ≤ ρ̂+ η

ρ ≥ ρ̂− η

(36)

From equation (8), we know the solution to the optimal hedge asset weights
of agent B, which are expressed as a function of ρ. We then have to solve the
minimization problem where we replace wB

H for the optimal weight as a function
of ρ. For notation purposes, let

wB
H,ρ =

µH
γBσ2

H

− wQσHσQρ

σ2
H

. (37)

Inserting this into the optimization problem, we now have,

min
{ρ}

UB = rf + wB
MµM + wB

H,ρµH + wQµQ

− γB

2

[
(wB

M)2σ2
M + (wB

H,ρ)
2σ2

H + (wQ)2σ2
Q + 2wB

H,ρwQσHσQρ
]

s.t. ρ ≤ ρ̂+ η (R1)

ρ ≥ ρ̂− η (R2)

(38)

To simplify notation, the optimal weight of the hedge asset for agent B can
be expressed as a function of ρ and denoted above by placing ρ in parenthesis.
Also notice that we have also identified each restriction as R1 and R2. From the
problem above we can then derive the Lagrangian function:

L = rf + wB
MµM + wB

H,ρµH + wQµQ

−γ
B

2

[
(wB

M)2σ2
M + (wB

H,ρ)
2σ2

H + (wQ)2σ2
Q + 2wB

H,ρwQσHσQρ
]

−λ1 [ρ− ρ̂− η]

−λ2 [ρ− ρ̂+ η]

(39)

The optimality for this inequality constrained problem will then have the fol-
lowing necessary conditions:
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
∂L
∂ρ = 0
∂L
∂λ1
≥ 0;λ1 ≥ 0;λ1.

∂L
∂λ1

= 0
∂L
∂λ2
≥ 0;λ2 ≥ 0;λ2.

∂L
∂λ2

= 0

(40)

Solving the derivatives, the necessary conditions can be written as:


∂L
∂ρ = γBw2

Qσ
2
Qρ−

wQσHσQµH

σ2
H

+ λ1 − λ2 = 0

ρ ≤ ρ̂+ η;λ1 ≥ 0;λ1.
∂L
∂λ1

= 0

ρ ≥ ρ̂− η;λ2 ≥ 0;λ2.
∂L
∂λ2

= 0

(41)

Furthermore, we can also show that the objective function of is globally convex
in ρ given our initial assumptions since the second derivative of the utility function
with respect to ρ is always positive.

∂2UB

∂ρ2
= γBw2

Qσ
2
Q > 0 (42)

This means that agent B will pick the minimum ρ within the confidence inter-
val, and ρ∗ can either be an interior solution in which case the Lagrange multipliers
λ1 and λ2 will both be zero, or a corner solution, where the Lagrange multiplier
for the binding restriction will be negative and the other zero. Hence, we will
have to solve the optimal demands of agent B and the equilibrium returns for 3
specific cases.

Case 1: No restriction is binding – λ1 = 0 and λ2 = 0.
Case 2: Restriction R1 is binding – λ1 > 0 and λ2 = 0.
Case 3: Restriction R2 is binding – λ1 = 0 and λ2 > 0.

Case 1
In this first case, no restriction is binding so both λ’s are zero and we have

to find the optimal ρ for agent B. Inserting this information to the necessary
conditions in the equation system (41), this simplifies to:

γBw2
Qσ

2
Qρ−

wQσHσQµH
σ2
H

= 0⇔ ρ =
µH

γBwQσHσQ
(43)

Once we insert this optimal ρ into the optimal demand of agent B in (8), we
then find that the optimal weight for the hedge asset for agent B is zero.
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wB
H = 0 (44)

If we insert this demand together with the demand of agent A from equation
(7) into the market clearing condition (10), we obtain the equilibrium return for
the case when both restrictions for ρ are non-binding.

µH = 0 (45)

Finally, we can insert the equilibrium return into (43) in order to find the
optimal ρ for agent B in this case.

ρ = 0 (46)

In terms of interpretation, this means that if agent B observes an estimate of
ρ, ρ̂, such that the confidence interval contains zero, then this will be them these
results will characterize the equilibrium for this case.

Case 2
In this case, R1 is binding meaning that λ1 > 0. Since both restrictions are

mutually exclusive, this means that the second restriction will not be binding and
therefore λ2 = 0. If we input this information into the necessary conditions in
equation (41), then we obtain the following:


γBw2

Qσ
2
Qρ−

wQσHσQµH

σ2
H

+ λ1 = 0

ρ = ρ̂+ η

λ1 > 0

(47)

In this case, since R1 is binding, we know that the optimal ρ for agent B will
be the upper bound of the confidence interval. If we insert this ρ into agent B’s
optimal demand for the hedging asset, we obtain:

wB
H =

µH
γBσ2

H

− wQσHσQ(ρ̂+ η)

σ2
H

(48)

Inserting the optimal demands of agent A and B, equations (7) and (48) respec-
tively, into the market clearing conditions from equation (10), the the equilibrium
return is given by:
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µH = γ̄WBwQσHσQ(ρ̂+ η) (49)

where just as before, γ̄ is the wealth weighted harmonic average of the risk
aversion coefficients of agents A and B. We can see that in this case, the equilib-
rium return is higher that what it would be if agent B were to simply take the
observed estimate of ρ as given. However we still do not know under which con-
ditions this restriction is binding. For that we have to substitute the equilibrium
return and the optimal ρ in this case into the necessary conditions for this case
from equation (47).

λ1 = γ̄WBw2
Qσ

2
Q(ρ̂+ η)− γBw2

Qσ
2
Q(ρ̂+ η) (50)

Since λ1 > 0, we must substitute the value of λ1 above into this inequality.

γ̄WBw2
Qσ

2
Q(ρ̂+ η)− γBw2

Qσ
2
Q(ρ̂+ η) > 0⇔ (γ̄WB − γB)(ρ̂+ η) > 0

⇔ ρ̂ < −η
(51)

From here we see that the upper bound of the confidence interval is the bind-
ing restriction whenever the observed estimate ρ̂ is below zero and the confidence
interval does not contain zero. Note that the last step in the equation above comes
from the fact that (γ̄WB−γB) < 0 which we show in Appendix C in equation (35).

Case 3
For the third and final case, R2 is the binding restriction meaning that λ2 > 0

and that λ1 = 0. Applying this to the general necessary conditions from (41), we
obtain:


γBw2

Qσ
2
Qρ−

wQσHσQµH

σ2
H

− λ2 = 0

ρ = ρ̂− η
λ2 > 0

(52)

Inserting the optimal ρ from above into the hedge asset demand of B from (8),
we get:

wB
H =

µH
γBσ2

H

− wQσHσQ(ρ̂− η)

σ2
H

(53)
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Inserting the optimal demands of agent A and B, equations (7) and (53) respec-
tively, into the market clearing conditions from equation (10), the the equilibrium
return is given by:

µH = γ̄WBwQσHσQ(ρ̂− η) (54)

where just as before, γ̄ is the wealth weighted harmonic average of the risk
aversion coefficients of agents A and B. We can see that in this case, the equi-
librium return is lower that what it would be if agent B were to simply take the
observed estimate of ρ as given. However we still do not know under which con-
ditions this restriction is binding. For that we have to substitute the equilibrium
return and the optimal ρ in this case into the necessary conditions for this case
from equation (52).

λ2 = γBw2
Qσ

2
Q(ρ̂− η)− γ̄WBw2

Qσ
2
Q(ρ̂− η) (55)

Since λ2 > 0, we must substitute the value of λ2 above into this inequality.

γBw2
Qσ

2
Q(ρ̂− η)− γ̄WBw2

Qσ
2
Q(ρ̂− η) > 0⇔ (γB − γ̄WB)(ρ̂− η) > 0

⇔ ρ̂ > η
(56)

From here we see that the lower bound of the confidence interval is the binding
restriction whenever the observed estimate ρ̂ is above zero and the confidence
interval does not contain zero.

Since UB is globally convex in ρ, it means the optimal ρ these solutions solve
agent B’s minimization problem. Once we incorporate cases 1 through 3, we
obtain the result from proposition 2.
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Figure 1: Comparing models with and without ambiguity aversion.

Panel A: Model Calibration. For the model with no ambiguity aversion, U
is set to zero.

Variable Value
γA 4
γB 4
σH 0.2
σQ 0.2
wQ 0.5
WA 0.5
WB 0.5
η 0.3

Panel B: Comparing ρ agent B uses to determine optimal demand.
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Panel C: Comparing equilibrium µH under ambiguity aversion and no ambiguity
aversion

Panel D: Comparing equilibrium µH in absolute terms under ambiguity aversion
and no ambiguity aversion.
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Tables 

Table 1 – Predictive Regression Summary 

Description: Cross sectional predictive regressions for beta risk measures. Every month we run a predictive regression 

using cross sectional data from the past 12 months in order to estimate the beta measure of the following 12 months. 

This table reports the average coefficient for each explanatory variable over the 624 months from January 1964 until 

December 2016. T-statistics are calculated using Fama-MacBeth standard errors, with 12 Newey-West lags due to the 

overlapping beta data. Independent variables were winsorized at the 2.5th and 97.5th percentiles and standardized so 

that the coefficients are interpreted as increases in the risk loading per standard deviation increase of the independent 

variable. 

Panel A: Forecasted Risk Loading: Beta                

Model 

Beta       IV Coskew 
log 

(Size) 
BTM ROE Leverage 

Industry 

Dummies 

(Y/N) 

Average 

Adj. R2 
RMSE 

(1) Avg. Coefficient 0.31             N 47.7% 0.34 

  t-stat 21.44                   

(2) Avg. Coefficient 0.27 0.08           N 50.5% 0.33 

  t-stat 20.55 11.87                 

(3) Avg. Coefficient 0.26 0.08 -0.01         N 50.9% 0.33 

  t-stat 21.08 12.29 -2.14               

(4) Avg. Coefficient 0.25 0.10 -0.01 0.03 -0.02 -0.09 -0.01 N 54.2% 0.33 

  t-stat 18.67 16.39 -2.41 5.66 -3.24 -2.75 -1.09       

(5) Avg. Coefficient 0.22 0.08 -0.01 0.02 -0.03 -0.10 0.02 Y 60.1% 0.32 

  t-stat 16.21 19.12 -2.04 4.43 -5.19 -3.65 4.12       

 

Panel B: Forecasted Risk Loading: Beta DR               

Model 

Beta  

DR      
IV Coskew 

log 

(Size) 
BTM ROE Leverage 

Industry 

Dummies 

(Y/N) 

Average 

Adj. R2 
RMSE 

(1) Avg. Coefficient -0.01             N 2.9% 0.31 

  t-stat -4.31                   

(2) Avg. Coefficient -0.03 0.03           N 5.0% 0.31 

  t-stat -9.02 4.71                 

(3) Avg. Coefficient -0.03 0.03 -0.02         N 5.8% 0.31 

  t-stat -8.93 4.75 -6.52               

(4) Avg. Coefficient -0.02 0.02 -0.01 -0.02 -0.02 0.01 0.02 N 9.0% 0.31 

  t-stat -6.79 3.41 -6.11 -4.57 -3.58 0.45 5.83       

(5) Avg. Coefficient -0.02 0.01 -0.01 -0.03 -0.01 0.01 0.03 Y 13.8% 0.30 

  t-stat -6.86 3.05 -5.31 -5.31 -3.83 0.68 7.29       

 

  



 

Panel C: Forecasted Risk Loading: Beta SMB               

Model 

Beta  

SMB      
IV Coskew 

log 

(Size) 
BTM ROE Leverage 

Industry 

Dummies 

(Y/N) 

Average 

Adj. R2 
RMSE 

(1) Avg. Coefficient 0.11             N 9.5% 0.52 

  t-stat 6.01                   

(2) Avg. Coefficient -0.02 0.20           N 18.9% 0.50 

  t-stat -1.18 15.26                 

(3) Avg. Coefficient -0.02 0.19 -0.01         N 20.0% 0.50 

  t-stat -0.95 14.95 -2.33               

(4) Avg. Coefficient 0.04 0.10 0.00 -0.18 -0.02 -0.17 -0.03 N 31.5% 0.47 

  t-stat 2.95 9.63 -0.87 -20.97 -2.68 -2.52 -3.75       

(5) Avg. Coefficient 0.02 0.09 0.00 -0.18 -0.02 -0.14 0.00 Y 37.2% 0.46 

  t-stat 1.49 10.25 -1.44 -22.98 -2.04 -2.61 -0.33       

 

Panel D: Forecasted Risk Loading: Beta HML               

Model 

Beta 

HML 
IV Coskew log(Size) BTM ROE Leverage 

Industry 

Dummies 

(Y/N) 

Average 

Adj. R2 
RMSE 

(1) Avg. Coefficient -0.42             N 14.5% 0.77 

  t-stat -7.98                   

(2) Avg. Coefficient -0.32 -0.10           N 18.1% 0.76 

  t-stat -7.19 -3.97                 

(3) Avg. Coefficient -0.32 -0.10 -0.03         N 19.7% 0.76 

  t-stat -7.10 -4.07 -2.48               

(4) Avg. Coefficient -0.22 -0.08 -0.02 -0.01 0.17 0.14 0.13 N 35.9% 0.69 

  t-stat -5.70 -4.03 -1.77 -1.58 11.82 1.62 9.64       

(5) Avg. Coefficient -0.18 -0.07 -0.01 -0.01 0.16 0.06 0.10 Y 45.6% 0.66 

  t-stat -6.63 -4.21 -1.40 -1.73 13.95 0.88 9.67       

 

 



Table 2 – Beta portfolio sorts 

Description: This table summarizes the value weighted average returns on portfolios formed on realized, predicted and pre-ranking beta measures described in the panels. Each month, 

Betas are calculated using daily returns of the past 12 months. These betas are then used to sort stocks and form value weighted quintile portfolios invested in the same time period in 

which the betas were estimated for the realized betas and invested over the next 12 months for the predicted and pre-ranking betas. Over the sample, the number of stocks in each portfolio 

ranges from 17 to 181 stocks. Returns are in excess of the 1 month treasury bill over the same 12 month period. Market Beta, Beta DR, Beta SMB and Beta HML are the value weighted 

average realized beta loadings in the portfolios over time. The Hi-Lo portfolio is the long short portfolio going long the high and shorting the low beta portfolios, and the t-stat  for raw 

returns and betas is calculated using Newey-West heteroskedastic-robust standard errors with 12 lags. CAPM Alphas is calculated using a CAPM regression with Newey-West 

heteroskedastic-robust standard errors with 12 lags. The sample period ranges from January 1965 until December 2016 and uses monthly observations. 

          Panel A - Relative Downside Beta Sorts           

                            

Realized Beta Portfolio Sorts   Predicted Beta Portfolio Sorts   Pre Ranking Beta Portfolio Sorts 

Portfolio Raw Return CAPM Alpha Beta DR   Portfolio Raw Return CAPM Alpha Beta DR   Portfolio Raw Return CAPM Alpha Beta DR 

1 Lo 

Beta 
2.69% -4.24% -0.41    1 Lo Beta 5.53% -0.46% -0.07    

1 Lo 

Beta 
6.21% -0.64% -0.08  

2 5.70% 0.01% -0.14    2 6.21% 1.26% -0.01    2 6.61% 1.15% -0.04  

3 7.55% 2.18% 0.00    3 6.91% 1.82% 0.01    3 6.68% 1.27% -0.03  

4 8.36% 2.82% 0.15    4 8.08% 2.89% 0.02    4 6.36% 1.15% -0.01  

5 Hi 

Beta 
8.94% 3.20% 0.41    5 Hi Beta 9.66% 3.92% 0.05    

5 Hi 

Beta 
6.42% 0.58% 0.02  

                            
Hi-Lo 6.25% 7.45% 0.81    Hi-Lo 4.13% 4.37% 0.12    Hi-Lo 0.21% 1.22% 0.10  

t-stat 4.820  4.991      t-stat 2.632  2.588  8.083    t-stat 0.142  0.931  7.124  

 

          Panel B - SMB Beta Sorts           

                            

Realized Beta Portfolio Sorts   Predicted Beta Portfolio Sorts   Pre Ranking Beta Portfolio Sorts 

Portfolio Raw Return CAPM Alpha Beta SMB   Portfolio Raw Return CAPM Alpha Beta SMB   Portfolio Raw Return CAPM Alpha Beta SMB 

1 Lo 

Beta 
6.26% 0.99% -0.59    1 Lo Beta 5.37% 0.02% -0.33    

1 Lo 

Beta 
5.59% 0.60% -0.37  

2 7.22% 2.20% -0.17    2 6.91% 1.01% -0.03    2 6.57% 1.28% -0.18  

3 6.95% 1.25% 0.09    3 7.63% 1.52% 0.11    3 7.61% 2.04% -0.04  

4 6.41% -0.30% 0.36    4 8.72% 2.28% 0.22    4 7.65% 1.10% 0.10  

5 Hi 

Beta 
4.66% -3.22% 0.89    5 Hi Beta 10.79% 3.30% 0.35    

5 Hi 

Beta 
7.55% 0.08% 0.30  

                            
Hi-Lo -1.60% -4.21% 1.48    Hi-Lo 5.42% 3.28% 0.67    Hi-Lo 1.96% -0.52% 0.66  

t-stat -0.673  -1.821      t-stat 2.569  1.764  26.576    t-stat 0.999  -0.257  26.367  



 

          Panel C - HML Beta Sorts           

                            

Realized Beta Portfolio Sorts   Predicted Beta Portfolio Sorts   Pre Ranking Beta Portfolio Sorts 

Portfolio Raw Return CAPM Alpha Beta HML   Portfolio Raw Return CAPM Alpha Beta HML   Portfolio Raw Return CAPM Alpha Beta HML 

1 Lo 

Beta 
7.43% 0.42% -1.09    1 Lo Beta 6.20% -0.69% -0.58    

1 Lo 

Beta 
4.97% -1.79% -0.62  

2 6.87% 0.82% -0.32    2 5.48% -0.06% -0.15    2 6.55% 0.65% -0.17  

3 6.51% 1.49% 0.06    3 6.88% 1.50% 0.11    3 7.11% 1.70% 0.04  

4 6.34% 1.21% 0.39    4 7.42% 2.71% 0.32    4 7.68% 2.53% 0.21  

5 Hi 

Beta 
6.11% 0.75% 1.01    5 Hi Beta 7.97% 3.79% 0.55    

5 Hi 

Beta 
7.15% 2.34% 0.52  

                            
Hi-Lo -1.32% 0.33% 2.09    Hi-Lo 1.76% 4.49% 1.13    Hi-Lo 2.19% 4.13% 1.13  

t-stat -0.487  0.116      t-stat 0.789  2.001  19.078    t-stat 0.958  1.772  17.267  

 

          Panel D - Market Beta Sorts           

                            

Realized Beta Portfolio Sorts   Predicted Beta Portfolio Sorts   Pre Ranking Beta Portfolio Sorts 

Portfolio Raw Return CAPM Alpha Market Beta   Portfolio Raw Return CAPM Alpha Market Beta   Portfolio Raw Return CAPM Alpha Market Beta 

1 Lo 

Beta 
4.68% 1.82% 0.45    

1 Lo 

Beta 
5.95% 2.49% 0.56    

1 Lo 

Beta 
5.82% 2.40% 0.57  

2 5.11% 0.77% 0.75    2 7.15% 2.47% 0.82    2 6.86% 2.05% 0.81  

3 6.11% 0.66% 0.98    3 6.16% 0.82% 0.93    3 6.70% 1.18% 0.95  

4 7.23% 0.24% 1.22    4 6.02% -0.20% 1.06    4 7.10% 0.71% 1.10  

5 Hi 

Beta 
10.00% 0.49% 1.64    

5 Hi 

Beta 
6.83% -1.14% 1.27    

5 Hi 

Beta 
5.48% -2.36% 1.33  

                            
Hi-Lo 5.32% -1.33% 1.19    Hi-Lo 0.87% -3.64% 0.71    Hi-Lo -0.34% -4.75% 0.77  

t-stat 1.648  -0.533      t-stat 0.358  -1.646  18.900    t-stat -0.140  -2.142  20.713  

  



Table 3 – Hedge Portfolio Beta Distributions 

Description: This table looks at the distributions of the realized time-series betas of the hedge portfolios from the portfolio sorts.  

Each of these beta distributions corresponds to the beta used for the portfolio sort, i.e. the Beta DR row is the Beta DR of the 

Long-Short Portfolio formed on either pre ranking or predicted Beta DRs. Panel A shows the distribution of realized betas for 

the long-short portfolios formed on pre-ranking betas, while Panel B shows the distribution of realized betas of the long-short 

portfolios sorted on predicted betas. 

 

Panel A - Pre Ranking 

Beta                   

Confidence Interval   99%   95%   90% 

  Mean   LL UL   LL UL   LL UL 

Market Beta 0.77   0.22 2.12   0.34 1.61   0.39 1.19 

Beta DR 0.10   -0.16 0.43   -0.10 0.36   -0.08 0.33 

Beta SMB 0.66   0.20 1.11   0.28 1.01   0.32 0.97 

Beta HML 1.13   -0.44 2.82   0.14 2.20   0.28 2.00 

  

 

Panel B - Predicted Beta                   

Confidence Interval   99%   95%   90% 

  Mean   LL UL   LL UL   LL UL 

Market Beta 0.71   0.16 1.93   0.29 1.65   0.35 1.19 

Beta DR 0.12   -0.23 0.39   -0.14 0.34   -0.09 0.31 

Beta SMB 0.67   -0.01 1.10   0.30 1.02   0.35 0.96 

Beta HML 1.13   0.06 2.80   0.18 2.17   0.30 1.78 

 

 

   



Table 4 – Stock Summary Statistics 

Description: Summary statistics for stock betas and controls used in the Fama MacBeth regressions. 

In Panel A, the mean is the time series mean of cross sectional means of the variable and the standard 

deviation is the time series mean of the cross sectional standard deviations of each variable. The 

percentile and median statistics are the time series mean of the cross sectional percentiles and 

medians. In Panel B, the mean is the cross sectional mean of the time series means of each stock. The 

standard deviation is the cross sectional mean of the time series standard deviations of each stock. 

The average autocorrelation, is the mean of the 12 month autocorrelation of the betas for each stock.  

Note that given the 12 months used to estimate betas, we are measuring the autocorrelations of betas 

estimated without overlapping windows. 

 

Panel A - Cross Section         

            

  Mean 

Standard 

Deviation 

99th 

Percentile Median 

1st 

Percentile 

Realized Betas           

Market Beta 1.014 0.459 0.199 0.966 2.265 

Beta D 1.018 0.538 -0.004 0.957 2.530 

Beta DR 0.004 0.315 -0.799 0.003 0.816 

Beta SMB 0.131 0.538 -0.975 0.087 1.635 

Beta HML -0.004 0.782 -2.174 0.056 1.763 

Predicted Betas           

Market Beta 0.977 0.281 0.427 0.974 1.620 

Beta D 0.986 0.286 0.432 0.977 1.657 

Beta DR -0.003 0.062 -0.169 0.000 0.129 

Beta SMB 0.078 0.224 -0.463 0.100 0.537 

Beta HML 0.021 0.363 -0.787 0.022 0.804 

Controls           

Idiosyncratic Vol 0.017 0.006 0.008 0.016 0.035 

Coskew -0.112 0.150 -0.456 -0.113 0.236 

logSize 7.641 1.008 6.175 7.433 10.736 

BTM 0.600 0.378 0.080 0.532 1.835 

 

Panel B - Time Series     

        

  Mean 

Standard 

Deviation 

Average 

Autocorrelation 

Realized 

Betas       

Market Beta 1.129 0.338 0.205 

Beta D 1.144 0.454 0.104 

Beta DR 0.015 0.318 -0.049 

Beta SMB 0.361 0.459 0.032 

Beta HML -0.202 0.656 0.098 

 

  



Table 5 – Fama MacBeth Regressions 

Summarizing results from equation (XX): 𝑅𝑖𝑡 = 𝜆0,𝑡 + 𝜆1,𝑡𝐸𝑡−1[𝛽𝑖𝑡
𝑅] + 𝛿𝑖𝑡, we present the average risk premium estimates and their respective 

t-stats using Fama-MacBeth regressions with 12 Newey West Lags. Each column has a different 𝛽 as an independent variable.  Panel A uses 

realized betas to explain the cross-section of returns, while Panel B uses pre ranking betas. Controls in both these panels are the values 

available at the beginning of the year in which we evaluate returns on the left hand side. Panel C uses direct beta forecasts estimated at t-1 

estimated from the best model from Table 1 (Model 5). All variables are winsorized at the 1st and 99th percentiles and all right hand side 

variables are standardized every period so that we can more easily compare across different betas. We do not use controls in Panel C due to 

multicollinearity issues since predicted betas are a linear combination of some of the control variables.  

Panel A - Contemporaneous Betas 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Market Beta   0.023 0.017   0.023 -0.016   0.021 -0.018 0.024 0.032 

t-stat   1.890 5.289   2.036 -2.405   1.900 -2.378 2.235 2.885 

Beta DR 0.024 0.019 0.033             0.014 0.012 

t-stat 5.087 5.571 2.609             5.482 5.234 

Beta SMB       -0.003 -0.006 0.032       -0.010 -0.020 

t-stat       -0.341 -0.902 2.824       -1.305 -2.840 

Beta HML             -0.009 -0.006 0.029 -0.008 -0.022 

t-stat             -0.868 -0.756 2.491 -1.087 -3.165 

iVol     -0.011     -0.006     -0.012   -0.009 

t-stat     -2.297     -1.200     -2.621   -2.118 

Coskew     0.000     -0.001     0.000   0.000 

t-stat     -0.014     -0.271     -0.196   -0.140 

Size     -0.016     -0.023     -0.017   -0.024 

t-stat     -3.724     -6.329     -4.144   -7.046 

BTM     0.012     0.010     0.019   0.018 

t-stat     2.501     2.161     4.332   4.375 

Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

                        

Average Adj. R2 2.0% 10.4% 15.5% 4.1% 11.3% 16.1% 5.7% 12.9% 17.3% 16.0% 19.7% 

Observations 309199 309199 309199 309199 309199 309199 309199 309199 309199 309199 309199 

   



Panel B - Pre Ranking Betas 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Beta   -0.004 -0.002   -0.002 0.005   -0.002 -0.001 -0.003 -0.005 

t-stat   -0.412 -0.730   -0.305 1.307   -0.211 -0.108 -0.396 -0.759 

Beta DR 0.000 -0.001 -0.005             -0.001 -0.002 

t-stat 0.116 -0.369 -0.781             -0.410 -0.888 

Beta SMB       0.004 0.005 -0.002       0.002 0.002 

t-stat       0.612 1.061 -0.366       0.556 0.512 

Beta HML             0.009 0.006 -0.003 0.000 -0.004 

t-stat             1.146 1.010 -0.538 0.070 -0.827 

iVol     0.000     -0.001     -0.001   -0.001 

t-stat     0.047     -0.173     -0.235   -0.129 

Coskew     -0.002     -0.001     -0.002   -0.003 

t-stat     -1.059     -0.262     -0.689   -1.201 

Size     -0.001     0.001     -0.001   0.000 

t-stat     -0.244     0.221     -0.156   0.047 

BTM     0.006     0.006     0.006   0.006 

t-stat     1.221     1.195     1.422   1.461 

Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

                        

Average Adj. R2 0.6% 5.3% 9.7% 2.1% 5.9% 9.9% 3.0% 6.5% 10.3% 7.9% 11.1% 

Observations 335867 335867 335867 335867 335867 335867 335867 335867 335867 335867 335867 

 

 

 

 

 

 

 



Panel C - Predicted Betas   

  (1) (2) (3) (4) (5) (6) (7) 

Market Beta   0.026   0.015   0.032 0.027 

t-stat   2.118   1.197   2.423 2.094 

Beta DR 0.016 0.019         0.011 

t-stat 2.528 4.446         1.882 

Beta SMB     0.022 0.019     0.009 

t-stat     3.406 3.542     1.224 

Beta HML         0.006 0.018 0.018 

t-stat         0.720 2.998 3.060 

Intercept Yes Yes Yes Yes Yes Yes Yes 

                

Average Adj. R2 2.1% 10.2% 2.9% 11.0% 4.3% 11.7% 14.7% 

Observations 309110 309110 309110 309110 309110 309110 309110 

 

 

  



Table 6 – Optimal portfolio weights 

Description: In this table we look at the optimal weights for a CRRA investor estimated from equation (XXX). As hedge portfolios, we use the 

long-short portfolios from Tables 3 to 5, formed by going long the highest quintile of beta estimates and short the lowest quintile. Every 

month, we form portfolios and then hold them for a year. Due to the overlapping returns, we correct t-stats using Newey-West standard errors 

with 12 lags. 

 

Panel A: Only Market Portfolio     

  Gamma 

  1 2 5 10 20 

Market 

Weight 1.72 0.98 0.42 0.22 0.12 

t-stat 3.78 2.90 2.73 2.68 2.54 

 

Panel B: Contemporaneous Betas 

                                        

Relative downside beta hedge portfolio   SMB beta hedge portfolio   HML beta hedge portfolio 

  Gamma     Gamma     Gamma 

  1 2 5 10 20     1 2 5 10 20     1 2 5 10 20 

Market 

Weight 1.75 1.26 0.59 0.32 0.18   
Market 

Weight 1.94 1.15 0.50 0.27 0.15   
Market 

Weight 1.73 0.98 0.42 0.22 0.12 

t-stat 4.11 4.11 3.86 3.89 3.62   t-stat 6.48 3.33 3.10 3.06 2.89   t-stat 3.70 2.82 2.65 2.60 2.48 

                                        

Hedge 

Weight 3.58 2.61 1.18 0.62 0.33   
Hedge 

Weight -1.22 -0.46 -0.20 -0.11 -0.06   
Hedge 

Weight 0.05 0.02 0.00 -0.01 -0.01 

t-stat 
8.61 5.90 5.42 5.83 5.82   t-stat 

-

30.58 
-1.85 -1.76 -1.80 -1.92   t-stat 

0.10 0.07 -0.04 -0.20 -0.45 

 

 

 



Panel C: Pre Ranking Betas 

                                        

Relative downside beta hedge portfolio   SMB beta hedge portfolio   HML beta hedge portfolio 

  Gamma     Gamma     Gamma 

  1 2 5 10 20     1 2 5 10 20     1 2 5 10 20 

Market 

Weight 1.74 1.00 0.43 0.23 0.12   
Market 

Weight 1.77 1.02 0.44 0.23 0.13   
Market 

Weight 1.98 1.17 0.50 0.25 0.13 

t-stat 4.00 2.97 2.76 2.69 2.51   t-stat 3.51 2.75 2.62 2.59 2.42   t-stat 5.63 3.33 2.99 2.85 2.60 

                                        

Hedge 

Weight 0.52 0.30 0.12 0.06 0.03   

Hedge 

Weight -0.16 -0.11 -0.05 -0.03 -0.02   

Hedge 

Weight 1.18 0.63 0.24 0.11 0.05 

t-stat 0.66 0.67 0.65 0.59 0.49   t-stat -0.24 -0.28 -0.34 -0.39 -0.40   t-stat 1.88 1.82 1.72 1.59 1.34 

 

 

Panel D: Predicted Betas 

                                        

Relative downside beta hedge portfolio   SMB beta hedge portfolio   HML beta hedge portfolio 

  Gamma     Gamma     Gamma 

  1 2 5 10 20     1 2 5 10 20     1 2 5 10 20 

Market 

Weight 1.78 1.04 0.45 0.24 0.13   
Market 

Weight 1.25 0.74 0.33 0.18 0.10   
Market 

Weight 1.94 1.21 0.52 0.26 0.13 

t-stat 4.31 3.06 2.83 2.78 2.60   t-stat 2.23 1.99 1.96 1.96 1.91   t-stat 6.98 3.34 2.92 2.74 2.47 

                                        

Hedge 

Weight 2.54 1.43 0.59 0.30 0.16   
Hedge 

Weight 1.70 0.85 0.32 0.15 0.07   
Hedge 

Weight 1.23 0.72 0.28 0.13 0.05 

t-stat 3.71 2.71 2.55 2.58 2.69   t-stat 2.20 1.97 1.87 1.76 1.46   t-stat 1.88 1.85 1.73 1.54 1.19 

 

 

 



Panel E: Predicted Betas and Fama French SMB and HML as Control Portfolios 

                        

      Relative downside beta hedge portfolio       

        Gamma       

        1 2 5 10 20       

      
Market 

Weight 1.45 1.11 0.51 0.26 0.13       

      t-stat 3.98 3.35 2.67 2.46 2.26       

                        

      

Hedge 

Weight 1.88 1.00 0.40 0.20 0.12       

      t-stat 1.85 1.57 1.49 1.53 1.70       

                        

      

SMB 

Weight 0.05 -0.01 0.00 0.01 0.02       

      t-stat 0.05 -0.01 0.00 0.08 0.20       

                        

      

HML 

Weight 2.36 1.62 0.67 0.31 0.11       

      t-stat 2.53 3.01 2.76 2.46 1.76       
 

 

 


