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1 Introduction  

Which market impounds new information faster into prices, the index futures market or the 

spot market for the constituent stocks of the index? Transaction costs are likely to be lower in 

the futures market. Given that the magnitude of the transaction costs determines whether a 

trader can profitably trade on a given piece of information, the adjustment of prices to market-

wide information (e.g. announcements of macroeconomic variables) should be faster in the 

futures market. On the other hand, traders possessing information about the value of individ-

ual stocks will most likely trade that stock rather than the whole index. Consequently, stock-

specific information should be reflected in the spot market first.  

The issue of the relative contributions of spot and futures markets to the process of price dis-

covery is of obvious importance, and consequently has received considerable attention in the 

literature. The by now common methodology is to estimate an error correction model. There 

are, however, several problems which make straight estimation of the model troublesome.  

First, the constituent stocks of the index trade infrequently. Consequently, index values are 

partially based on stale prices. The infrequent trading effect together with bid-ask bounce 

introduces distinct serial correlation patterns into the time series of index returns which may 

induce a spurious lead of the futures markets. Although Stoll and Whaley (1990) have pro-

posed a method to purge the return data of the infrequent trading effects, it is much less clear 

how the index level data needed in the estimation of the ECM can be purged of those effects. 

Second, the cointegrating relation between index levels and index futures prices implied by 

the cost-of-carry model is not constant over time but rather changes daily. Third, the standard 

error correction model implies that the speed of adjustment of prices to deviations from the 

long-run equilibrium relation is independent of the size of the deviation. This is not necessar-

ily the case, however, because arbitrageurs will start trading when the deviation is larger than 



 2

the expected roundtrip transaction cost. Their trading activity is likely to speed the adjust-

ment.  

One potential solution to the infrequent trading (and bid-ask bounce) problem, first proposed 

by Shyy, Vijayraghavan and Scott-Quinn (1996), is to use quote midpoints rather than prices. 

The time-variability of the cointegrating relationship can be accounted for by either demean-

ing the log price series as proposed by Dwyer, Locke and Yu (1996) or by using discounted 

futures prices as is done by Kempf and Korn (1996) and Martens, Kofman and Vorst (1998). 

Finally, a threshold error correction model allows the adjustment coefficients to depend on 

the magnitude of the deviation from the long-run equilibrium relation and is thus able to ac-

count for the presence of arbitrageurs (Dwyer, Locke and Yu 1996).  

The present paper contributes to this line of research. We use data from the German blue chip 

index DAX and the DAX futures contract traded on the EUREX to assess both markets' con-

tributions to price discovery. As suggested above, we use quote midpoint data, we use de-

meaned log price series, and we use a threshold error correction model. The contribution of 

our paper is threefold. First, we modify the threshold error correction model to allow for time-

varying transaction costs. Previous papers (Dwyer, Locke and Yu 1996, Martens, Kofman and 

Vorst 1998) have estimated the threshold transaction costs (i.e., the size of the deviation of 

prices from their long-run equilibrium that allows arbitrageurs to break even) and implicitly 

assumed the costs to be constant. It is, however, well established that bid-ask spreads follow a 

distinct intradaily pattern. We allow for this time-variation by making the threshold dependent 

on the bid-ask spreads in the two markets. Second, this is the first paper to estimate a thresh-

old error correction model using midquote data. This is potentially important because arbi-

trage signals should be based on tradable prices (i.e., bid and ask quotes) rather than on past 

transaction prices - even more so as the index values are affected by the infrequent trading 

problem alluded to above. Finally, we use data at a higher frequency than previous papers (15 
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seconds as compared to 1 or 5 minutes). This allows a more precise estimation of the contri-

bution of the cash and the futures markets to the process of price discovery.1 The increased 

number of observations further allows us to estimate separate models for each trading day. 

Another distinctive feature of our paper is that both markets under scrutiny are electronic 

limit order markets. Consequently, the results are unlikely to be caused by differences in mar-

ket microstructure.  

Our results can be summarized as follows. The futures market clearly dominates the price 

discovery process. Returns in the cash market depend much more heavily on lagged returns in 

the futures market than vice versa. When measuring the contributions to price discovery using 

the information shares or the common factor weights we also find that the futures market 

leads. We further find that the dynamics of the adjustment process is different when arbitrage 

opportunities exist. In these cases, the leading role of the futures market is even more pro-

nounced. 

The paper is structured as follows. Section 2 provides a brief survey of the literature. Section 

3 describes the data set and presents some descriptive statistics. Methodology and results of 

our empirical analysis are presented in section 4. Section 5 concludes.  

2 A Brief Review of the Literature  

Empirical analysis of the relation between stock index values and index futures prices is com-

plicated by methodological problems. Stocks in the spot market are not traded simultane-

ously. Consequently, the index is partially calculated from stale prices. This introduces posi-

tive serial correlation in the index returns which, in turn, may introduce a spurious lead-lag 

 

1 Note that when estimating the Hasbrouck (1995) information shares, the contemporaneous correlation be-
tween the return innovations is arbitrarily assigned to one market. By reversing the order of markets, upper 
and lower bounds for the information shares can be obtained. The higher the frequency of observations the 



relation. Further, bid-ask bounce may induce negative serial correlation in the return series. 

Stoll and Whaley (1990) propose to estimate an ARMA model for the index returns and to use 

the innovations from the model rather than the index returns to analyze the lead-lag relation 

between the spot and the futures market. Using a VAR model they find that the futures market 

leads the stock market by about 5 minutes. The general result that the futures market leads the 

spot market has, despite all methodological differences, almost universally been confirmed in 

subsequent research.2  

The VAR approach does not take into account that index values and futures prices are cointe-

grated. What is required instead is an error correction model (ECM). Different approaches at 

estimating an ECM have been proposed. Some authors have estimated the cointegrating rela-

tionship (e.g. Shyy, Vijayraghavan and Scott-Quinn 1996) but the more common approach is 

to use a pre-specified cointegrating vector based on the theoretical cost-of-carry relation (e.g. 

Fleming, Ostdiek and Whaley 1996, Dwyer, Locke and Yu 1996, Kempf and Korn 1996, 

Martens, Kofman and Vorst 1998, Booth, So and Tse 1999).  

Two issues deserve attention. First, the cost-of-carry relation  implies that the 

cointegrating relation is not constant over time but rather changes daily.

r(T t )
t tF S e −=

3 Many previous pa-

pers do not take that into account. There are, however, some notable exceptions. Dwyer, 

Locke and Yu (1996) subtract the daily mean from the time series of log prices before esti-
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lower the contemporaneous correlation. Consequently, higher frequency of observations allows for more ac-
curate estimation of the information shares.  

2 A notable exception is Shyy, Vijayraghavan and Scott-Quinn (1996). They confirm the result of a lead of the 
futures markets when basing their estimates on price data. Estimation based on quote midpoints, on the other 
hand, leads to the conclusion that the cash market leads. Frino, Walter and West (2000) who also use quote 
midpoints do not confirm this result.  

3 If, as is usual, the model is estimated using logs, the relation becomes ( ) ( )t tln F ln S r(T t)= + − . This implies 

that, in a regression of ( )ln tF  on ( )ln tS , the slope is constant and equal to one, whereas the intercept 
changes daily. Note that we do not include the expected dividend yield in the cost-of-carry relation. The rea-
son is that the DAX is a performance index, i.e., calculation of the index is based on the presumption that di-
vidends are reinvested.  



mating the ECM. Kempf and Korn (1996) and Martens, Kofman and Vorst (1998) use a pre-

specified cointegrating vector that takes the cost-of-carry relation explicitly into account.4  

The second issue is related to the infrequent trading problem. The ECM is usually estimated 

using simple log returns. These returns do, however, suffer from the infrequent trading prob-

lem. Some authors (e.g. Fleming, Ostdiek and Whaley 1996, Kempf and Korn 1996, Pizzi, 

Economopoulos and O'Neill 1998) have used ARMA residuals rather than log returns when 

estimating the ECM. The problem with this approach is that it combines an error correction 

term directly derived from the index and futures price levels with the ARMA residuals in one 

model, thereby introducing a sort of inconsistency into the model.  

Two possible solutions have been proposed. Jokivuolle (1995) develops a procedure, based 

on the Beveridge-Nelson decomposition, that allows estimation of the true index level. Using 

these estimates rather than the observed index levels allows to formulate an ECM in which 

both the error correction term and the lagged returns are purged of infrequent trading effects. 

To the best of our knowledge this procedure has not yet been applied. Alternatively, the esti-

mation can be based on quote midpoints rather than on prices (see Shyy, Vijayraghavan and 

Scott-Quinn 1996). Midpoints are based on firm quotes and thus should not suffer from an 

infrequent trading problem. Further, there is no bid-ask bounce in quote data.  

The general ECM specification implies that, whenever prices deviate from the long-run equi-

librium relation (which, in turn, is given by the cost-of-carry relation), there is a tendency for 

prices to adjust. The speed of adjustment is independent of the magnitude of the deviation. 

Several authors have argued that this is likely to be an incomplete description of the adjust-

ment process. When deviations from the long-run equilibrium are larger than the round-trip 

transaction costs, arbitrageurs step in, thereby speeding the adjustment process. The resulting 
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4 Specifically, their error correction term at time t is ( ) ( ) ( )(t t t t ,T t ,Tz ln F ln S r q T t )= − − − −  where r is the 
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dynamics can be captured by a threshold error correction model (TECM). This approach was 

pioneered by Yadav, Pope and Paudyal (1994) and subsequently adopted by Dwyer, Locke 

and Yu (1996), Kempf and Korn (1996) and Martens, Kofman and Vorst (1998).  

In these papers the TECM is estimated using transaction price data. Thus, it is assumed that a 

sufficiently large deviation between lagged futures prices and lagged cash index values trig-

gers an arbitrage signal. However, arbitrageurs can not trade at these prices. This is particu-

larly true for the cash index because the calculation of the index value is partially based on 

stale prices. It would be preferable to construct the arbitrage signal from quotation data be-

cause trades can actually be executed at these prices. Data on bid and ask quotes is, however, 

not usually available from open outcry futures markets.  

A second implicit assumption made in previous papers is that the transaction cost and, conse-

quently, the price difference triggering an arbitrage signal, is constant. This is not necessarily 

the case, however. The most important determinant of the transaction cost is the bid-ask 

spread. The spread, however, is time-varying. Some of the variation is caused by distinct in-

tradaily patterns. Consequently, a model that assumes constant roundtrip transaction costs 

may fail to fully capture the dynamics of the adjustment process. The methodology used in 

the present paper takes the time-varying nature of transaction costs explicitly into account.  

3 Data  

We use data for the German blue chip index DAX. The DAX is a value-weighted index calcu-

lated from the prices of the 30 most liquid German stocks. The prices are taken from Xetra, 

the most liquid market for German stocks.5 Index values are published in intervals of 15 sec-

 

risk-free interest rate, q is the expected dividend yield and T is the maturity date of the futures contract.  
5 During our sample period, the first quarter of 1999, Xetra accounted for 79.9% of the total order book turn-

over in the constituent stocks of the DAX on all German exchanges. See the fact book 1999 of Deutsche 
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onds. The DAX is a performance index, i.e., the calculation of the index is based on the pre-

sumption that dividends are reinvested. Consequently, the expected dividend yield does not 

enter the cost of carry relation.  

Besides an index calculated from the most recent transaction prices, Deutsche Börse AG also 

calculates an index from the current best ask prices (ADAX) and an index from the current 

best bid prices (BDAX). These indices are value-weighted averages of the inside quotes, and 

the difference between them is equivalent to a value-weighted average bid-ask spread.  

Futures contracts on the DAX are traded on the EUREX. The contracts are cash-settled and 

mature on the third Friday of the months March, June, September and December. The DAX 

futures contract is a highly liquid instrument. In the first quarter of 1999 (our sample period), 

more than 1,150,000 transactions were recorded. The open interest at the end of the quarter 

was more than 290,000 contracts.6  

Both Xetra and EUREX are electronic open limit order books. Therefore, the results of our 

empirical analysis are unlikely to be affected by differences in the microstructure of the mar-

kets.7 The trading hours in the two markets differ. Trading in Xetra starts with a call auction 

held between 8.25 am and 8:30 am. After the opening auction, continuous trading starts and 

extends until 5 pm, interrupted by an intraday auction which takes place between 1:00 pm and 

1:02 pm. Trading of the DAX futures contract starts at 9 am and extends until 5 pm.  

We obtained all data from Bloomberg. Our sample period is the first quarter of 1999 and cov-

ers 61 trading days. For this period we obtained the values of the DAX index and the two 

 

Börse AG, p. 33. Note that, during our sample period, Deutsche Börse AG also calculated DAX values based 
on the prices of the Frankfurt Stock Exchange.  

6 See the fact book 1999 of Deutsche Börse AG, p. 88.  
7 Some previous papers, most notably Grünbichler, Longstaff and Schwartz (1994), Kempf and Korn (1998) 

and Frino and McKenzie (2002), analyze spot and futures markets with different trading protocols. The focus 
of these papers is to assess the implications of the trading protocol for price discovery.  



quote-based indices ADAX and BDAX at a frequency of 15 seconds. From the quote-based 

indices we calculated a midquote index 

t t
t

ADAX BDAXMQDAX
2
+

=  

and a time series of percentage bid-ask spreads  

t t
t

t

ADAX BDAXS 100
MQDAX

−
=  

We further obtained a time series of all bid and ask quotes and all transaction prices of the 

nearby DAX futures contract.  

We only use data for the period of simultaneous operation of both markets. We further discard 

all observations before 9 am and from 4:55 pm onwards. We also discard all observations 

within 5 minutes from the time of the intraday call auction (held between 1:00 pm and 1:02 

pm). When estimating the ECM we assure that all lagged returns are from the same trading 

day.  

In order to synchronize the data from the cash and the futures market we proceeded as fol-

lows. For each index level observation we identify the most recent transaction price and the 

most recent quote midpoint from the DAX futures data. Thus, in each pair of observations the 

observation from the futures market is older (though by some seconds only) than the matched 

observation from the cash market. This procedure clearly works to the disadvantage of the 

futures market.  

The cost-of-carry relation implies that the cash index and the futures contract are cointe-

grated. In order to eliminate the time-variation of the cointegrating relation we follow the pro-

cedure introduced by Dwyer, Locke and Yu (1996). We calculate the mean of the log price 

series for each trading day and subtract the mean from the original series. This procedure 

leaves the intraday returns unaffected but eliminates the average daily level difference be-

 8
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tween the futures prices and the cash index level.8 All error correction models are estimated 

using these de-meaned series.  

One distinguishing feature of our dataset is its high frequency. However, increasing the fre-

quency of observations will only increase the precision of the estimates when the frequency 

of events (transactions or quote changes) in the market is sufficiently high. A simple way to 

assess the frequency of events is to consider the fraction of zero returns. Table 1 shows these 

frequencies for the four return series under scrutiny. Zero returns for the DAX are observed in 

5% of the return intervals. For the midquote returns this frequency is substantially lower, 

amounting to only 0.53%. These low values are not too surprising because a transaction or a 

quote change, respectively, will be observed whenever there is a transaction or a quote change 

in at least one of the 30 constituent stocks. Things look a bit differently for the futures market. 

Here, we observe zero returns in 21.1% of the case when we consider returns calculated from 

prices and in 16.7% of the cases when considering midquote returns. These figures, also being 

considerably higher than those for the DAX, are still low enough to suggest that the higher 

frequency of observations is warranted.  

Insert Table 1 about here 

Besides the frequency of zero returns Table 1 provides a variety of further descriptive statis-

tics. The return standard deviation is higher in the futures market, and in both markets it is 

higher for the price returns than for the midquote returns. This is not surprising because price 

returns are affected by bid-ask bounce whereas midquote returns are not. All four series ex-

hibit negative skewness and excess kurtosis. Both characteristics are more pronounced in the 

cash market.  

 

8 As noted previously, an alternative procedure would be to use discounted futures prices (as in Martens, Kof-
man and Vorst 1998). However, if futures prices deviate systematically from the values implied by the cost 
of carry relation (as is suggested by several empirical papers, including Bühler and Kempf (1995) for the 
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The DAX returns exhibit positive serial correlation (ρ = 0.12). This comes as no surprise 

given that the constituent stocks of the index trade infrequently and non-synchronously. What 

is a surprise, however, is the observation that the first order serial correlation of the midquote 

returns is even higher, amounting to 12.9%.9 The pattern for the futures market is more in line 

with what one would expect. The returns calculated from prices are negatively correlated, 

most likely because of bid-ask bounce. The midquote returns are weakly positively correlated 

(ρ = 0.04).  

The last line of Table 1 shows the average bid-ask spreads. These amount to 0.28% for the 

DAX but to only 0.03% for the DAX futures contract. These figures are consistent with re-

sults for the UK reported in Berkman, Brailsford and Frino (2005) and substantiate our earlier 

claim that transaction costs are lower in the DAX futures market.  

Arbitrage requires to either sell in the cash market and buy in the futures market or to do the 

reverse. In both cases the transaction cost is the sum of the half-spread in the spot market and 

the half spread in the futures market. In passing, we note that this measure may overstate the 

true transaction costs for two reasons. First, arbitrageurs do not necessarily have to trade all 

30 DAX stocks. They can instead trade a tracking portfolio consisting of fewer stocks 

(thereby, of course, introducing tracking error). As this portfolio is likely to be tilted towards 

liquid stocks, the average spread will be lower than the average spread of all DAX stocks. 

Second, there is a positive probability that the arbitrageur will be able to unwind his position 

early at a profit. The value of the early unwinding option (Brennan and Schwartz 1988, 1990) 

reduces the price differential necessary to make arbitrage profitable. Dwyer, Locke and Yu 

 

the German market), this procedure will produce biased arbitrage signals. De-meaning, on the other hand, 
removes any systematic deviation of futures prices from the cost of carry relation.  

9 This contrasts with the negative serial correlation at the individual stock level documented by Hasbrouck 
(1991) and others. A possible explanation for the positive serial correlation is that a quote change in one 
stock may trigger a quote change in other stocks. This would induce positive serial correlation in the returns 
of the midquote index.  
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(1996, p. 312) suggest "that the trigger for index arbitrage is about one-half of the round-trip 

transaction costs". We will return to this issue in section 4.  

Figure 1 shows boxplots of the transaction costs. We sample the transaction costs at hourly 

intervals, starting at 9.30 am and ending at 4.30 pm, resulting in 61 observations for each 

point in time. The differences between the boxplots are representative of the intraday pattern 

of our transaction cost measure. Apparently, transaction costs follow a J-shaped pattern. The 

individual boxplots provide evidence that there is also considerable variation in the transac-

tion costs across trading days.  

Insert Figure 1 about here 

As a prerequisite for our empirical analysis we have to establish that the time series are I(1) 

and are cointegrated. Table 2 presents the results of augmented Dickey-Fuller tests and Phil-

lips-Perron tests applied to the log of the levels and their first differences. Four time series are 

considered, the DAX index itself, the DAX midquote index and the prices and the quote mid-

points of the DAX futures. The results of the stationarity tests clearly suggest that all series 

are I(1).  

Results of Johansen tests (not shown) applied to pairs of log time series (DAX level and DAX 

futures prices, DAX midquote index and DAX futures midquotes) provide clear evidence that 

the time series are cointegrated.  

Insert Table 2 about here 



4 Methodology and Results 

Having established that the time series are I(1) and cointegrated we can proceed by estimating 

the error correction model  
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where p denotes a de-meaned log price series and r denotes a log return. The indices X and F 

identify observations and coefficients relating to the cash market (X, Xetra) and the futures 

market (F). We follow the literature (e.g., Dwyer, Locke and Yu 1996) by using a pre-

specified cointegrating vector.  

Model (1) is estimated using OLS, for both prices and quote midpoints. The Schwarz infor-

mation criterion suggests to include 16 lags in the price model and 12 lags in the quote mid-

point model. We decided to include 20 lags in both models. This corresponds to 5 minutes.  

Two approaches have been proposed to assess the contributions to price discovery.10 Has-

brouck (1995) introduced the information share (IS). The information share relates the contri-

bution of an individual market’s innovation to the total innovation of the common efficient 

price by decomposing the variance of the error term. The information shares are not unique 

whenever the error terms in the two equations are correlated. A Cholesky factorization is used 

which arbitrarily attributes the covariance contribution to the market which is defined to be 

the first market in the system. This procedure thus maximizes the information share of the 

first market and, consequently, minimizes the share of the second market. By permuting the 

order of the markets, upper and lower bounds for each market’s information share are ob-

tained.  



The second measure of the contribution to price discovery is the common factor weight 

(CFW). It has first been proposed by Schwarz and Szacmary (1994) on intuitive grounds. A 

formal justification, based on the work of Gonzalo and Granger (1995), has been provided by 

Booth et al. (2002), deB Harris, McInish and Wood (2002) and Theissen (2002). The common 

factor weights are easily obtained from the coefficients on the error correction terms in (1):  

 ,
F X

X F
F X FCFW CFWδ

X

δ
δ δ δ

−
= =

− −δ

                                                                                                                                                        

 (2) 

The results are presented in Table 3. To conserve space we only report coefficients for the 

first four lags. Considering the model estimated from transaction price data first, we note that 

the independent variables have considerable explanatory power for the cash market returns, as 

is evidenced by an adjusted R2 of 0.18. They have much less explanatory power for the re-

turns in the futures markets. The adjusted R2 for the futures market equation is a mere 0.01. 

Returns in both markets depend negatively on their own lagged values. This may be due to 

bid-ask bounce. We further find that returns in both markets depend positively on lagged re-

turns in the other market. The F statistic indicates bi-directional causality. A look at the val-

ues of the F statistics and at the coefficient values and their t statistics reveals, however, that 

the impact of lagged futures returns on the cash market is far stronger than the impact of cash 

market returns on the futures market.  

In both equations the coefficient on the error correction term has the expected sign and is sig-

nificant. Thus, both markets contribute to price discovery. Apparently, however, the futures 

market dominates the process of price discovery. The information share for the futures market 

is in the range from 85.12 % to 93.95% (lower and upper bound, respectively) as compared to 

a range from 6.05% to 14.88% for the cash market. The common factor weight is somewhat 

 

10 For a discussion of the relative merits of these two methods see Baillie et al. (2002), de Jong (2002), deB 
Harris et al. (2002), Hasbrouck (2002) and Lehman (2002).  
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more favorable for the cash market, assigning it a 28.39% contribution, but the qualitative 

implication is the same. The futures market is the clear leader in the process of price discov-

ery.  

Insert Table 3 about here 

The results obtained when estimating (1) with quote midpoint data are comparable. The R2 for 

the cash market equation is higher at 0.23 whereas the R2 for the futures market equation 

drops to 0.008. Midquote returns in the cash market depend negatively on their own lagged 

values. We do not observe a similar pattern for the futures market. Returns in both markets 

depend positively on lagged returns in the other market. Although the F statistic again indi-

cates bi-directional causality it is obvious from the estimation results that the futures market 

dominates.  

When proceeding to the measures of the contribution to price discovery, we note that both 

measures assign the cash market a slightly higher contribution than in the transaction price 

model. Still, both measures confirm that the futures market leads in the process of price dis-

covery. This contrasts with the results of Shyy et al. (1996) who find that the cash market 

leads in the process of price discovery when the estimation is based on quote midpoints. 

When interpreting our results it should be kept in mind that the construction of our dataset 

puts the futures market at a disadvantage. Thus our results are likely to even understate the 

role of the futures market in the process of price discovery.  

To check the robustness of our results we estimate model (1) for each day separately. A sum-

mary of the results is presented in Table 4.11 They are very similar to those obtained for the 

                                                 

11 In some cases the estimate of the coefficient on the error correction term in the futures market equation was 
negative. This implies that returns in the futures market to not adjust to deviations of price levels from their 
long-run equilibrium. In these cases the common factor weight as defined in equation (2) would assign a 
negative weight to the cash market and a weight larger than 1 to the futures market. When calculating the av-
erage common factor weight we replaced these values with 0 and 1, respectively.  
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pooled data set and clearly confirm the finding that the futures market leads in the process of 

price discovery.  

Insert Table 4 about here 

As noted previously, model (1) assumes that the speed of adjustment to deviations of the price 

levels from their long-run equilibrium relation is independent of the size of these deviations. 

This is unlikely to be the case, however, as arbitrageurs stand ready to take opportunity of any 

profits available. Thus, when the deviations are large enough to make arbitrage profitable 

(i.e., when they are larger than the transaction costs) we should expect faster adjustment.  

In order to pursue this issue further we first have to define an arbitrage signal. Previous pa-

pers assumed that arbitrage will set in when the price deviation exceeds a constant threshold 

level. However, it is well known (and was documented in Figure 1) that transaction costs are 

time varying. In order to take advantage of profit opportunities, arbitrageurs have to trade fast. 

They are thus likely to use market orders and consequently have to pay the spread. An arbi-

trage trade consists of either selling shares at the bid in the cash market and buying the futures 

at the ask, or of selling futures at the bid and buying shares at the ask. In both cases, the total 

transaction cost is the half spread in the cash market plus the half spread in the futures market.  

We assume that arbitrage is profitable when the price deviation exceeds this threshold. We 

thereby assume that there are no other relevant transaction costs besides the spread, and we 

assume that the position is either held until maturity or can be unwound at zero cost. This 

corresponds to the conjecture by Dwyer, Locke and Yu (1996, p. 312) that "the trigger for 

index arbitrage is about one-half of the round-trip transaction costs".  

As both markets under scrutiny are fully automated, arbitrage trades may be executed as pro-

gram trades. We therefore do not consider the possibility of delays between the occurrence of 



price deviations and the onset of arbitrage.12 We thereby implicitly assume that the reaction 

time is no more than our data frequency, i.e., 15 seconds.  

Table 5 takes a closer look at the arbitrage opportunities. Overall, the deviation between the 

(de-meaned) cash and futures market quote midpoints exceeds the transaction costs in about 

5.46% of the cases. In 2.42% of the observations, the cash index is larger than the futures 

price whereas in 3.03% the reverse is true.13 In most cases, the price deviation exceeds the 

transaction cost only by a small amount. The average value is 1.83 index points. Larger devia-

tions do occur, however, as is evidenced by a maximum value of almost 19 points.  

Insert Table 5 about here 

We define a dummy variable Dt taking on the value 1 if there is an arbitrage opportunity as 

defined above and zero otherwise. We then augment model (1) to obtain  
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r r r p p D p p
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X
t

F
t

α β γ δ δ ε

α β γ δ δ ε
 (3) 

The coefficients 2
Xδ  and 2

Fδ  measure whether the adjustment to price deviations is different 

in the presence of arbitrage opportunities. We expect these coefficients to have the same sign 

as 1
Xδ  and 1

Fδ .  

As already noted, arbitrage requires to either sell in the cash market and buy in the futures 

markets or to do the reverse. The price dynamics in the two cases may be different because 

selling in the cash market may require short sales. We therefore estimate an additional model 

                                                 

12 In contrast, Dwyer, Locke and Yu (1996) use data from open outcry markets. In such an environment delays 
are likely. Dwyer, Locke and Yu (1996) address the issue empirically and estimate delays ranging from 1 
minute to 5 minutes.  

13 These figures are clearly lower than the corresponding values in Dwyer, Locke and Yu (1996, p. 324). They 
report that slightly less than 9% of their observations are in each of the two tail regimes that are associated 
with arbitrage opportunities.  
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in which we allow the coefficient on the error correction term to be different in the two cases 

alluded to above. The model is  

 17

+

+
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( ) ( ) ( )
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p p D p p D p p

τ τ τ τ
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τ τ τ τ
τ τ
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δ δ δ
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ε

δ δ δ ε

 (4) 

where  and  are dummy variables identifying those arbitrage opportunities that require 

selling in the cash market ( ) and selling in the futures market ( ).  

1
tD 2

tD

1
tD 2

tD

The information shares are not properly defined for the augmented models. We can, however, 

construct suitable extensions of the common factor weights as follows:  

 
( )

( ) ( )
( )

( ) ( )
1 2 1 2

2 2
1 2 1 2 1 2 1 2

,
F F X X

X F
F F X X F F X X

CFW CFW
δ δ δ δ

δ δ δ δ δ δ δ δ

+ −
= =

+ − + + − +

+
 (5) 

2
XCFW  and  measure the contribution to price discovery in the presence of arbitrage 

opportunities. Analogous to (5) we can also define CFW measures for the two "arbitrage re-

gimes" in model (4).  

2
FCFW

We have argued earlier that the identification of arbitrage opportunities should be based on 

quote data rather than on transaction price data. Consequently, we estimate models (3) and (4) 

using quote midpoint data. To enhance comparability with our previous results we include 20 

lages in both models although the Schwarz information criterion suggests to use less (14 for 

model (3) and 12 for model (4)).  

The results are presented in Table 6. They are comparable to those shown in Table 3. The 

cash market returns depend negatively on their own lagged values and depend strongly and 

positively on lagged futures returns. Futures returns, on the other hand, depend positively on 



lagged cash market returns but depend on their own lagged values significantly only at lag 1. 

As before we find bi-directional causality, and as before we can conclude from the magnitude 

of the coefficient estimates and the test statistics that the dependence of the cash market on 

the futures market is much stronger than the reverse dependence. These results hold for model 

(3) as well as for model (4).  

The estimates of the coefficient on the error correction term in the "no-arbitrage regime" have 

the same sign but are smaller in magnitude than those presented before. Based on these esti-

mates, the CFW measure attributes both markets almost equal contributions to price discovery 

(48.7% for the cash market and 51.3% for the futures market). It should be kept in mind, 

though, that we are likely to understate the contribution of the futures market. The coeffi-

cients  and  have the expected sign and are significant. When measuring the 

contributions to price discovery in the arbitrage regime using (5) we find that the share of the 

cash market drops to 36.4% whereas the share of the futures market rises to 63.6%. The re-

sults thus suggest that the leading role of the futures market in the price discovery process is 

particularly pronounced when price deviations are large (i.e., when arbitrage opportunities 

exist).  

2
XCFW 2

FCFW

The estimates of the parameters 2 3 2, ,X X Fδ δ δ  and 3
Fδ  in model (4) have the expected sign and 

are significant. The result that the contribution of the futures market to the price discovery 

process is higher when price deviations are large is confirmed. Additionally, we observe that 

the share of the cash market is lowest when there are arbitrage opportunities and the cash 

market index is larger than the futures price. This is the case where arbitrage requires selling 

in the cash market.  

Insert Table 6 about here 
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We check the robustness of the results by estimating model (3) for individual days. We can 

not do the same for model (4) because the number of observations in the two arbitrage re-

gimes is very low on some days (see the figures shown in the last line of Table 5). The results, 

shown in Table 7, are fully consistent with our previous results.  

Insert Table 7 about here 

To summarize our results, we find that the futures market clearly dominates the price discov-

ery process. Even so we constructed our sample such that the futures market is at a disadvan-

tage, we find that returns in the cash market depend much more heavily on lagged returns in 

the futures market than vice versa. The measures of the contributions to price discovery also 

indicate that the futures market leads. We further find that the dynamics of the adjustment 

process is different when arbitrage opportunities exist. In these cases, the leading role of the 

futures market is even more pronounced.  

5 Summary and Conclusion 

In this paper we reconsider the issue of price discovery in spot and futures markets. Its contri-

bution is threefold. First, we modify the threshold error correction model to allow for time-

varying transaction costs. Second, we estimate a threshold error correction model using mid-

quote data whereas previous papers used price data. Midquote data is conceptually superior 

because arbitrage signals should be based on tradable prices (i.e., bid and ask quotes) rather 

than on past transaction prices. Finally, we use data at a very high frequency (15 seconds as 

compared to 1 or 5 minutes in previous papers). This allows a more precise estimation of the 

contribution of the cash and the futures markets to the process of price discovery.  

Our basic finding that the futures market leads in the process of price discovery is consistent 

with most previous results. We do not confirm the finding of Shyy et al. (1996) that the spot 
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market leads when the estimation is based on quote midpoints rather than on transaction 

prices.  

The lead of the futures market is more pronounced in the presence of arbitrage signals. Thus, 

when the price (or, more precisely, quote midpoint) deviation between the spot and the fu-

tures market is large, the spot market tends to adjust to the futures market.  

Our results imply that the futures market generally impounds new information faster than the 

spot market. They also imply that market-wide information (which is likely to be reflected in 

the futures market first) is more important for returns at the index level than stock-specific 

information (which is likely to be reflected in the spot market first). As a consequence, re-

searchers investigating into the market response to macroeconomic news, or into informa-

tional linkages between markets in different countries, should consider using futures market 

data rather than spot market data.  
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Table 1: Descriptive Statistics 

The table presents descriptive statistics for four return series: DAX returns, DAX midquote returns, DAX fu-
tures returns and DAX futures midquote returns. The returns are calculated over intervals of 15 seconds. The last 
line shows the average quoted bid-ask spread. For the cash market this is the value-weighted average of the 
spreads of the constituent stocks.  

 
 DAX MQDAX FDAX MQFDAX 

Percentage of zero 
returns 5.00% 0.53% 21.05% 16.7% 

Return standard 
deviation 0.000298 0.000223 0.000404 0.000340 

Skewness -0.0938 -0.9588 -0.1074 -0.1655 

Kurtosis 25.62 27.07 6.32 7.65 

First order serial 
correlation 0.120 0.129 -0.079 0.040 

Average bid-ask 
spread 0.2846% 0.0292% 
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Table 2: Stationarity Tests 

The table presents the p-values from augmented Dickey Fuller tests and Phillips-Perron tests applied to both the 
levels and to the first differences of the time series.  

 
 level first difference 

 Augmented DF Philipps / Perron Augmented DF Philipps / Perron 

log(xdax) 0.349 0.412 0.000 0.000 

log(mqdax) 0.401 0.519 0.000 0.000 

log(fdax) 0.439 0.399 0.000 0.000 

log(mqfdax) 0.370 0.396 0.000 0.000 

 



Table 3: Error Correction Models - Pooled Data 

The table presents the results of the error correction model 
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where p denotes a de-meaned log price series and r denotes a log return. The indices X and F identify observa-
tions and coefficients relating to the cash market (X, Xetra) and the futures market (F). We use a pre-specified 
cointegrating vector. The model is estimated by OLS with 20 lags, but only the coefficients for lags 1-4 are 
shown. We report the F-statistic for a test of the null hypothesis that the coefficients for the lagged returns of the 
other market (i.e., the cash market in the futures equation and vice versa) are jointly zero. The last lines report 
the measures of the contributions to price discovery. We report the common factor weights and lower and upper 
bounds for the information shares. The model is estimated based on prices (columns 1 and 2) and quote mid-
points (columns 3 and 4).  

 
 Transaction Prices Quote Midpoints 

 XDAX FDAX XDAX FDAX 

Constant -4.18 E-6 
(-4.83) 

-1.12 E-6 
(-0.87) 

-2.60 E-6 
(-4.13) 

-9.80 E-7 
(-0.90) 

EC -0.0540 
(-36.63) 

0.0214 
(9.77) 

-0.0278 
(-28.46) 

0.0190 
(11.25) 

XDAX(-1) -0.0104 
(-3.11) 

0.0651 
(13.09) 

-0.0744 
(-22.93) 

0.0443 
(7.88) 

XDAX(-2) -0.0374 
(-11.19) 

0.0500 
(10.06) 

-0.0649 
(-19.94) 

0.0441 
(7.84) 

XDAX(-3) -0.0362 
(-10.85) 

0.0446 
(8.97) 

-0.0515 
(-15.80) 

0.0486 
(8.61) 

XDAX(-4) -0.0412 
(-12.36) 

0.0270 
(5.45) 

-0.0413 
(-12.65) 

0.0407 
(7.22) 

FDAX(-1) 0.1532 
(60.22) 

-0.0732 
(-19.34) 

0.1935 
(94.65) 

0.0487 
(13.76) 

FDAX(-2) 0.1264 
(48.79) 

-0.0311 
(-8.08) 

0.1413 
(66.36) 

-0.0046 
(-1.25) 

FDAX(-3) 0.1113 
(42.55) 

-0.0195 
(-5.02) 

0.1066 
(49.07) 

-0.0062 
(-1.64) 

FDAX(-4) 0.0884 
(33.60) 

-0.0078 
(-1.99) 

0.0849 
(38.67) 

0.0026 
(0.68) 

R2 0.1807 0.0143 0.2281 0.0076 

F statistic 244.50 16.72 604.28 10.66 

Lags included 20 20 

IS - lower bound 0.0605 0.8512 0.1200 0.7671 

IS - upper bound 0.1488 0.9395 0.2329 0.8800 

CFW 0.2839 0.7161 0.4060 0.5939 
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Table 4: Error Correction Models - Daily Estimates 

The table presents summary results of error correction models estimated for each day of the sample period sepa-
rately. We report the mean of the coefficient estimates, the mean R2 and the mean values of the common factor 
weights and the lower and upper bounds of the information share. Only the coefficients for lags 1 to 4 are re-
ported. The model is estimated based on prices (columns 1 and 2) and quote midpoints (columns 3 and 4).  

 
 Transaction Prices Quote Midpoints 

 XDAX FDAX XDAX FDAX 

Constant -5.18 E-6 -4.36 E-7 -3.12 E-6 5.74 E-9 

EC -0.0764 0.0247 -0.0384 0.0239 

XDAX(-1) 0.0037 0.0645 -0.0700 0.0441 

XDAX(-2) -0.0261 0.0512 -0.0590 0.0420 

XDAX(-3) -0.0222 0.0436 -0.0480 0.0423 

XDAX(-4) -0.0271 0.0247 -0.0391 0.0398 

FDAX(-1) 0.1291 -0.0775 0.1756 0.0470 

FDAX(-2) 01084 -0.0323 0.1301 -0.0009 

FDAX(-3) 0.0946 -0.0166 0.0977 -0.0013 

FDAX(-4) 0.0721 -0.0117 0.0755 0.0056 

R2 0.1848 0.0207 0.2304 0.0153 

Lags included 20 20 

IS - lower bound 0.0696 0.8564 0.1390 0.7657 

IS - upper bound 0.1436 0.9304 0.2343 0.8610 

CFW 0.2376 0.7624 0.3633 0.6367 
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Table 5: Arbitrage Opportunities 

An arbitrage signal, in our definition, occurs when the absolute difference between the de-meaned cash and 
futures prices is larger than the transaction cost (the sum of the half-spread in the cash market and the half-
spread in the futures market). The table shows the number of arbitrage opportunities, the mean and median arbi-
trage profit and the maximum profit. Profits are measured in index points. The last line shows the lowest number 
of arbitrage opportunities observed on any individual day of the sample period. Columns 1 and 2 show separate 
figures for arbitrage opportunities where the cash index value is larger [smaller] than the futures price.  

 
 MQDAX>MQFDAX MQFDAX>MQDAX Both 

number of cases 2,658 
2.42% 

3,331 
3.03% 

5,989 
5.46% 

mean arbitrage profit 1.4788 2.1086 1.8291 

median arbitrage profit 1.0751 1.2503 1.1559 

maximum arbitrage profit 16.9659 18.9944 18.9944 

lowest daily number of 
observations 1 1 9 

 



Table 6: TECM - Pooled Data 

The table presents the results of the error correction models 
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(columns 3 and 4). p denotes a de-meaned log price series and r denotes a log return. The indices X and F iden-
tify observations and coefficients relating to the cash market (X) and the futures market (F). We use a pre-
specified cointegrating vector. The dummy variable Dt identifies all arbitrage signals. The dummy variables  
[ ] identify those arbitrage signals where the cash market midquote index is larger [smaller] than the midquote 
in the futures market. The models are estimated by OLS with 20 lags, but only the coefficients for lags 1-4 are 
shown. We report the F-statistic for a test of the null hypothesis that the coefficients for the lagged returns of the 
other market (i.e., the cash market in the futures equation and vice versa) are jointly zero. The last line reports 
the common factor weights 

1
tD

2
tD

 
 Arbitrage signals pooled Separate arbitrage signals 
 XDAX FDAX XDAX FDAX 

Constant -2.77 E-6 
(-4.43) 

-8.96 E-7 
(-0.82) 

5.15 E-7 
(0.81) 

-1.71 E-6 
(1.54) 

EC / no arbitarge -0.0119 
(-10.91) 

0.0113 
(5.96) 

-0.0131 
(-12.05) 

0.0116 
(6.11) 

EC / arbitrage -0.0511 
(-32.55) 

0.0248 
(9.09)   

EC / arb. X-F   -0.0923 
(-39.60) 

0.0350 
(8.62) 

EC / arb. F-X   -0.0265 
(-14.17) 

0.0187 
(5.73) 

XDAX(-1) -0.0764 
(-23.66) 

0.0452 
(8.06) 

-0.0748 
(-23.23) 

0.0448 
(7.99) 

XDAX(-2) -0.0661 
(-20.43) 

0.0447 
(7.94) 

-0.0648 
(-20.09) 

0.0444 
(7.89) 

XDAX(-3) -0.0527 
(-16.27) 

0.0492 
(8.73) 

-0.0514 
(-15.89) 

0.0488 
(8.66) 

XDAX(-4) -0.0423 
(-13.03) 

0.0412 
(7.31) 

-0.0408 
(-12.61) 

0.0409 
(7.25) 

FDAX(-1) 0.1894 
(92.96) 

0.0507 
(14.30) 

0.1850 
(90.68) 

0.0518 
(14.55) 

FDAX(-2) 0.1413 
(66.69) 

-0.0046 
(-1.24) 

0.1387 
(65.56) 

-0.0039 
(-1.06) 

FDAX(-3) 0.1079 
(49.89) 

-0.0068 
(-1.80) 

0.1057 
(48.99) 

-0.0062 
(-1.66) 

FDAX(-4) 0.0867 
(39.70) 

0.0017 
(0.45) 

0.0850 
(38.96) 

0.0022 
(0.58) 

R2 0.2362 0.0084 0.2405 0.0085 
F statistic 594.72 10.97 567.29 10.79 

Lags included 20 20 
CFW / no arbitrage 0.4871 0.5129 0.4693 0.5307 

CFW / arbitrage 0.3643 0.6357   
CFW / arb. X-F   0.3065 0.6934 
CFW / arb. F-X   0.4332 0.5668 
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Table 7: TECM - Daily Estimates 

The table presents summary results of error correction model 

( ) ( )

( ) ( )

1 1 1 2 1 1 1
1 1

1 1 1 2 1 1 1
1 1

− − − − − − −
= =

− − − − − − −
= =

= + + + − + − +

= + + + − + − +

∑ ∑

∑ ∑

k k
X X X X X F X X F X X F

t t t t t t t t

k k

X
t

F F F F F X F X F F X F
t t t t t t t t

r r r p p D p p

r r r p p D p p

τ τ τ τ
τ τ

τ τ τ τ
τ τ

F
t

α β γ δ δ ε

α β γ δ δ ε
 

estimated for each day of the sample period separately. We report the mean of the coefficient estimates, the 
mean R2 and the mean values of the common factor weights. Only the coefficients for lags 1 to 4 are reported. 
The model is estimated based on quote midpoints.  

 
 Transaction Prices 

 XDAX FDAX 

Constant -3.17 E-6 -6.65 E-7 

EC / no arbitrage -0.0243 0.0168 

EC / arbitrage -0.0825 0.0361 

XDAX(-1) -0.0686 0.0434 

XDAX(-2) -0.0573 0.0411 

XDAX(-3) -0.0461 0.0415 

XDAX(-4) -0.0376 0.0390 

FDAX(-1) 0.1637 0.0520 

FDAX(-2) 0.1250 0.0013 

FDAX(-3) 0.0951 -0.0002 

FDAX(-4) 0.0739 0.0059 

R2 0.2475 0.0169 

Lags included 20 

CFW / no arbitrage 0.4696 0.5304 

CFW / arbitrage 0.3409 0.6591 

 

 

 30



Figure 1: Distribution of transaction costs at hourly intervals 
 
 

.05

.10

.15

.20

.25

.30

.35

1 2 3 4 5 6 7 8
Hourly interval (1 = 9:30 a.m., ..., 8 = 4.30 p.m.)

 
 

 31


	Introduction
	A Brief Review of the Literature
	Data
	Methodology and Results
	Summary and Conclusion

