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Abstract

We propose a simulation-based strategy to estimate and empirically assess
a class of asset pricing models that account for rare but severe consumption
contractions that can extend over multiple periods. Our approach expands the
scope of prevalent calibration studies and tackles the inherent sample selection
problem associated with measuring the effect of rare disaster risk on asset
prices. An analysis based on postwar U.S. and historical multi-country panel
data yields estimates of investor preference parameters that are economically
plausible and robust with respect to alternative specifications. The estimated
model withstands tests of validity; the model-implied key financial indicators
and timing premium all have reasonable magnitudes. These findings suggest
that the rare disaster hypothesis can help restore the nexus between the real
economy and financial markets when allowing for multi-period disaster events.
Our methodological contribution is a new econometric framework for empirical
asset pricing with rare disaster risk.
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Tübingen, Germany, and Centre for Financial Research (CFR), Albertus-Magnus-Platz, 50923
Cologne, Germany. joachim.grammig@uni-tuebingen.de

‡Prior versions of this paper were presented at the 54th Annual Meeting of the European
Finance Association, the 71st Econometric Society European Meeting, the 10th Annual SoFiE
Conference, the International Conference in Honor of Luc Bauwens, and several seminars and
workshops. We are grateful for many helpful comments, in particular from Vikas Agarwal, Martijn
Boons, Svetlana Bryzgalova, Mathijs Cosemans, Campbell Harvey, Christoph Meinerding, Claus
Munk, Elisabeth Nevins, Julien Penasse, Marcel Rindisbacher, Stefan Rünzi, Christian Schlag,
Julie Schnaitmann, Bernd Schwaab, Kevin Sheppard, Lones Smith, George Tauchen, and Julian
Thimme. The comments and suggestions of Yacine Aı̈t-Sahalia (editor), an associate editor, and
three referees greatly helped improve the paper.

Electronic copy available at: https://ssrn.com/abstract=3377345



1 Introduction

According to Rietz’s (1988) rare disaster hypothesis (RDH), the high risk premium

for U.S. equity during the postwar period arose because investors ex ante demanded

compensation for possibly disastrous but unlikely consumption risks that they never

suffered from ex post. In turn, the RDH could help resolve the equity premium puzzle

and explain the notoriously poor empirical performance of consumption/preference-

based asset pricing models (C-CAPMs). However, the RDH is difficult to assess

econometrically using data that contain very few, if any, disastrous consumption

contractions. Many studies therefore resort to calibration methods. The few econo-

metric studies that exist provide mixed evidence regarding the explanatory power

of the RDH when it is possible for disastrous consumption contractions to build up

over multiple time periods.

We contribute to this discussion by proposing a novel methodology to resolve

the inherent sample selection problem that hampers empirical assessments of the

RDH. Following a recommendation by Blanchard (2008), we identify the parameters

of interest through moment conditions that are implied by the basic asset pricing

equation of a disaster-including C-CAPM. By allowing for multi-period disaster

events, conceived of as a marked point process (MPP), we take account of the caveat

that the apparent success of the RDH may hinge on the assumption that consumption

disasters unfold within a single period.

The empirical challenges call for a non-standard methodological approach. In-

spired by ideas put forth by Dridi et al. (2007), our proposed simulation-based

strategy combines the advantages of econometric analysis – namely, the appraisal

of identifying restrictions, loss functions, and conditions for validity – with cali-

bration practices, such as the use of different data to estimate different parts of

a model and the treatment of unidentified parameters. The analysis proceeds in
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two steps: It uses maximum likelihood to estimate the MPP parameters based on

multi-country data that contain disastrous consumption contractions, and then it

undertakes a simulation-based estimation of the investor preference parameters using

regular macroeconomic and financial data. The two-step approaches advanced by

Christiano and Eichenbaum (1992), Cecchetti et al. (1993), and Heaton (1995) are

early progenitors of such a strategy. As recommended by Dridi et al. (2007) and

Hansen and Heckman (1996), who explore the link between econometric analysis

and calibration practices, our empirical assessment focuses on the plausibility of the

preference parameter estimates, and we test whether the estimated model can explain

key economic indicators such as the market equity premium and Sharpe ratio.

By applying this new methodology to a combination of U.S. and multi-country

data, we obtain economically plausible estimates of the investor preference parameters:

the time discount factor, relative risk aversion (RRA), and intertemporal elasticity

of substitution (IES). The estimates of the time discount factor are smaller than but

close to unity, as expected of an investor with a positive rate of time preference and

quarterly decision frequency. In line with experimental evidence provided by Meyer

and Meyer (2005), Cochrane (2005) caps the upper bound of reasonable RRA at 5,

stricter than Mehra and Prescott’s (1985) often-cited upper bound of 10. With some

variation due to the selection of test assets, we obtain RRA estimates in a range

around 1.5. The 95% confidence bounds for the RRA coefficient also fall within

the tighter range of plausibility. The estimates of the IES are significantly greater

than unity and of a magnitude that is conveniently chosen for calibration studies.

Moreover, the difference of the estimated IES and reciprocal of the RRA estimate

is greater than 0, which indicates a preference for early resolution of uncertainty.

Previous studies suggest that an IES > 1, in combination with a preference for early

resolution, are necessary to obtain meaningful economic implications (e.g., Bansal
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and Yaron (2004); Epstein et al. (2014)).

Accordingly, key financial indicators – the market equity premium, mean T-bill

return, and market Sharpe ratio – implied by these parameter estimates exhibit mag-

nitudes that are plausible and consistent with the empirically observed counterparts.

Moreover, the model-implied timing premium, defined by Epstein et al. (2014) as the

fraction of lifetime consumption that one would relinquish to resolve consumption

risk, is economically sensible. This result is noteworthy, because many estimated

or calibrated C-CAPMs imply an implausibly high timing premium. The reported

findings also are invariant to alternative model specifications (e.g., disaster definition,

MPP model, data simulation procedure).

Empirical C-CAPM studies often produce implausible and/or imprecise parameter

estimates that entail doubtful asset pricing implications. The results presented herein

suggest instead that allowing for rare disasters within a preference-based asset pricing

framework can help restore the link between financial markets and the real economy,

even when allowing for multi-period disasters.

The RDH literature stream triggered by Barro (2006), to which our paper

contributes and draws inspiration from, has been lucidly summarized by Tsai and

Wachter (2015). Among studies that link the RDH to various aspects of financial

economics,1 some relate particularly closely to our contribution. Specifically, Barro

and Ursúa (2008) collect historical consumption data to study the size and frequency

of disasters. These data also enable Barro and Jin (2011) to fit power-law densities

to the empirical distribution of macroeconomic disasters. The first-step estimation

strategy proposed herein draws on their ideas. Nakamura et al. (2013) also consider

1 These aspects include index options (Backus et al. (2011)), the business cycle (Gourio (2012)),
the volatility puzzle (Wachter (2013)), credit spreads (Gourio (2013)), CDO prices (Seo and
Wachter (2018)), the volatility skew (Seo and Wachter (2019)), the value premium (Tsai and
Wachter (2016); Bai et al. (2019)), the persistence of dividend and consumption growth (Gillman
et al. (2015); Barro and Jin (2016)), the exchange rate puzzle (Farhi and Gabaix (2016)), and
return predictability (Marfè and Penasse (2020)).
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a multi-period disaster process but work within a Bayesian framework. They show

that, when calibrated with a sensible rate of time preference and IES, the U.S.

equity premium can be explained with a plausible RRA. Our frequentist approach

complements and extends their Bayesian analysis.

In many of the papers surveyed by Tsai and Wachter (2015), disasters occur as

one-period events. This assumption is under suspicion of being a driving force of

the apparent success of the RDH, as suggested by Constantinides’s (2008) comment

on Barro and Ursúa’s (2008) work and as also argued by Julliard and Ghosh (2012).

They offer one of the rare comprehensive econometric analyses (using an empirical

likelihood approach) to assess the RDH. By allowing for multi-period disasters and

modeling investor preferences with a time-additive power utility function, Julliard and

Ghosh (2012) conclude that to rationalize the equity premium puzzle with the help

of the RDH, the puzzle itself must be a rare event. Their results thus attenuate the

appeal of the rare disaster explanation. Using a novel econometric methodology that

employs global information about historical disasters instead of overweighting the U.S.

experience, the present study re-emphasizes the explanatory power of the RDH when

disasters can be multi-period events. To reach this conclusion though, time-additive

power utility must be abandoned; it is necessary to allow for nonindifference to

the temporal resolution of risk. The (im)possibility to account for a late resolution

premium offers a deeper explanation for the apparently disparate results reported

by Julliard and Ghosh (2012) on the one hand and Nakamura et al. (2013) and our

study on the other.

The remainder of this paper is structured as follows: Section 2 links the basic

asset pricing equation to a multi-period disaster process that is described by an MPP.

This combination yields moment conditions that identify the parameters of interest

and provide the foundations of a two-step estimation approach. Section 3 outlines
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the econometric strategy, and then Section 4 describes its implementation, taking

into account the limitations of the available data. Section 5 presents the results

of the empirical analysis and plausibility checks. By contrasting our results with

previous literature, we also help reconcile some apparent disparities in assessments

of the explanatory power of the RDH. A comparison of the proposed econometric

strategy with related approaches is provided in Section 6. Section 7 concludes.

2 A C-CAPM with multi-period rare disaster risk

Blanchard (2008) criticizes Barro and Ursúa’s (2008) analysis of the RDH that

relies on a calibrated Lucas-tree model (also used by Barro (2006) and subsequent

studies), which he calls a straitjacket for that purpose. Kim and Pagan (1999, p.

328) argue that when using such a model, “the specification errors being committed

are of sufficient magnitude to make conventional estimation and testing of dubious

value.” This caveat is one reason for the prevalence of calibration studies and the

limited amount of econometric work on the RDH. In the debate between advocates of

calibration and econometricians, we concur with Dridi et al.’s (2007) view that even

if a model is partially misspecified, economic reality should be captured by certain

parameters of interest that one should aim to estimate consistently. Moreover, with

regard to empirical assessments of the RDH, we agree with Blanchard (2008, p. 86),

who sees “no reason not to go back to asset pricing formulas that rely only on the

first-order intertemporal condition of consumers with no additional assumptions.”

How can these ideas offered by Dridi et al. (2007) and Blanchard (2008) be

operationalized though? We start by employing a discrete-time framework, a repre-

sentative investor with recursive Epstein-Zin-Weil (EZW) preferences (Epstein and

Zin (1989); Weil (1989)), and a constant decision frequency. As shown by Epstein
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and Zin (1989), the aforementioned intertemporal conditions, applied to a gross

return on an asset i, Ri, imply:

E [mt+1(θ1)R
i
t+1∣It] = price(Ri

t+1;θ1) = 1, (2.1)

where It is the investor’s information set at time t, and θ1 = (β, γ,ψ)′ contains the

time discount factor β, the RRA coefficient γ, and the IES ψ. The EZW stochastic

discount factor (SDF) reads:

mt+1(θ1) = β
θG

−θ/ψ
t+1 (Ra

t+1)
θ−1, (2.2)

with θ = (1 − γ)/(1 − ψ−1), where G denotes gross consumption growth, and Ra is

the return on aggregate wealth.

The basic asset pricing equation (2.1), suitably reformulated, provides the starting

point to allow for the risk of multi-period consumption disasters. For this purpose,

we first have to clarify what constitutes such an event. Barro (2006) defines a

disaster as a contraction b̄ ∈ [q,1] of regular gross consumption growth Gr, where

the threshold q > 0 differentiates regular bad times from disasters. This notion of

a disaster threshold must be adapted when accounting for disasters that can span

more than one period. Accordingly, we define a multi-period disaster as a succession

of consumption contractions that starts in period s1 and lasts until period s2, such

that the overall contraction exceeds the threshold value q:

1 −
s2

∏
j=s1

(1 − bj) ≥ q, (2.3)

where bj > 0 is a period-specific random contraction factor. A disaster event thus

describes a contraction in consumption at least of the size of the threshold q that may

accrue over multiple disaster periods or come in the form of one sharp, single-period

downturn. When dealing with multi-period disaster events, it is useful to introduce
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two binary indicators. The first, denoted by dt, equals 1 if period t is part of a disaster

event, and 0 otherwise. The second, denoted by d+t , equals 1 if period t belongs to a

disaster event that began in period s1 ≤ t, but the accumulated contractions up to t

have not yet reached the disaster threshold q, and 0 otherwise.

Adopting a prevalent specification from the rare disaster literature, we assume

that the consumption process can be described by a regular consumption growth

component Gr
t that is disturbed by a random contraction bt in case of a disaster,

such that:

Gt = G
r
t ⋅ (1 − bt)

dt . (2.4)

This multiplicative relation of regular and disaster growth component is a character-

istic feature of the rare disaster models by Barro (2006), Barro and Ursúa (2008),

Barro (2009), Barro and Jin (2011), and Wachter (2013). Analogous to (2.4), we

assume that an asset return Ri
t can be conceived of as a regular gross return Rir

t that

is perturbed by a random factor cit in case of a disaster:

Ri
t = R

ir
t ⋅ (1 − c

i
t)
dt . (2.5)

This formulation is motivated by a return specification that can be found in Barro

(2006). His Lucas-tree economy implies an expression for the return on the equity

claim that inherits the multiplicative relationship of the regular and contraction

components reflected in Eq. (2.4). Using Eq. (2.5), we extend this notion to other

asset returns, allowing for asset-specific contraction factors.2

The sequence of disaster events with associated consumption and return contrac-

2 For details on how Eqs. (2.4) and (2.5) relate to the work of Barro (2006) and Barro and Jin
(2011), see Section O.1 of the Online Appendix. The aforementioned papers from the rare disaster
literature rely on distributional assumptions about the regular and contraction components. As
we outline subsequently, we use the empirical distribution of the non-disastrous consumption
growth and asset returns to provide information about the distributional properties of regular
components, and invoke distributional assumptions only for the contraction components.
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tions can be described by an MPP observed in discrete time.3 Discrete time means

that a disaster event originates in some time period (e.g., certain quarter of a year)

and lasts for at least the originating period, but possibly longer, in which case it

becomes a multi-period disaster. In MPP terminology, the disaster periods (dates

t for which dt = 1) are called points. According to Hamilton and Jordà (2002), the

distribution of the points can be suitably described by the discrete-time hazard rate,

which gives the probability of period t being a disaster period, conditional on the

information set Υt−1:

ht = Pr(dt = 1∣Υt−1) = Pr(N(t) ≠ N(t − 1)∣Υt−1), t ∈ {1,2, . . . , T}, (2.6)

where N(t) is a function that counts the number of disaster periods that occurred as of

t. We assume that It−1 ⊂ Υt−1; in particular, while dt−1 and d+t−1 are contained in Υt−1,

they are not included in It−1. The investor does not know whether a consumption

contraction (or a series of them) eventually will build up into a multi-period disaster.

The variables observed in a disaster period are called marks in MPP terminology;

they describe the disaster event. The period-specific contraction factors are important

marks.

An MPP that accounts for the discrete hazard rate in (2.6), as well as the

distribution of the marks conditional on Υt−1 and dt = 1, provides a comprehensive

description of the disaster process, which facilitates a reformulation of the asset

pricing equation (2.1). That is, stepping back one period, conditioning down, applying

the law of total expectation (LTE), and using p = Pr(dt = 1) = E[dt], we obtain:

E [mt(θ1)R
i
t] = pE [mt(θ1)R

i
t∣dt = 1] + (1 − p)E [mt(θ1)R

i
t∣dt = 0] = 1. (2.7)

3 The use of MPPs stems from the modeling of natural disasters like earthquakes, which occur
infrequently in time and with different magnitudes (Ogata and Katsura (1986)).
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Rearranging terms yields:4

E [mt(θ1)R
i
t∣dt = 0] =

1 − pE [mt(θ1)Ri
t∣dt = 1]

1 − p
. (2.8)

Note that if disaster events were impossible, such that p = 0, then Eq. (2.8) would

reduce to:

E [mt(θ1)R
i
t∣dt = 0] = 1, (2.9)

which provides the basis for a generalized method of moments (GMM) estimation

performed on disaster-free data. However, with the possible occurrence of disaster

events, the moment restriction in Eq. (2.9) is not correct; the right-hand side

does not equal 1. In effect, the RDH suggests that this sample selection-induced

misspecification could be the reason for the underwhelming empirical performance of

C-CAPMs.

Eq. (2.8) can be further rewritten to replace the conditional expectations with

unconditional moments, which has pricing implications for two particular payoffs.

To demonstrate these implications, we use the LTE and reformulate the left-hand

side of Eq. (2.8) as:

E [mt(θ1)R
i
t∣dt = 0] =

E [mt(θ1)xit]

Pr(dt = 0)
=
E [mt(θ1)xit]

1 − p
=
E [mt(θ1)xit]

1 −E[dt]
, (2.10)

where xit = R
i
t ⋅ (1 − dt) can be conceived of as a payoff that equals 0 in every disaster

4 For the sake of a concise exposition, the main text focuses on gross returns. The same reasoning
can be applied to an excess return Rei

t (the difference of two gross returns, as in a zero-cost
portfolio), for which the reformulated basic asset pricing equation reads:

E [mt(θ1)Rei
t ∣dt = 0] = −

pE [mt(θ1)Rei
t ∣dt = 1]

1 − p
.

Appendix A.1 delineates the relevant steps. An alternative to conditioning down (2.1) would be
to exploit the orthogonality conditions entailed by the basic asset pricing equation, such that
for every instrument zt−1 ∈ It−1, E [mt(θ1)Rei

t zt−1] = 0. The analysis would then use Rei
t zt−1

instead of Rei
t . As pointed out by Cochrane (1996), Rei

t zt−1 can be conceived of as the payoff of
a managed portfolio, such that economically meaningful instruments should be chosen.
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period and that is, for a limited liability security like a stock, non-negative in regular

periods. The numerator on the right-hand side of Eq. (2.10) gives the expected value

of the price of this non-disaster payoff, because:

E [mt(θ1)x
i
t] = E (E [mt(θ1)x

i
t∣It−1]) = E[price(xit;θ1)]. (2.11)

Correspondingly, the right-hand side of Eq. (2.8) can be written as:

1 − pE [mt(θ1)Ri
t∣dt = 1]

1 − p
=

1 −E [mt(θ1)yit]

1 −E[dt]
=

1 −E[price(yit;θ1)]

1 −E[dt]
, (2.12)

where yit = R
i
t ⋅ dt can be conceived of as a payoff that is 0 in regular periods and, for

a limited liability security, non-negative in disaster periods.

We can now express the reformulated asset pricing equation (2.8) in terms of

an unconditional moment restriction that relates the pricing of the disaster payoff

y and the pricing of the non-disaster payoff x. For that purpose, let us denote by

θ0
1 = (β0, γ0, ψ0)′ the parameter values of the preference parameters that, when used

for the SDF in (2.2), satisfy Eq. (2.8). This reformulated pricing equation and the

subsequent manipulations conceal how the identification of the preference parameters

is intimately connected to the MPP that describes the disaster process. While this

MPP represents a model of the true data-generating process, we assume that the

model-implied discrete-time hazard rate and the conditional probability distribution

of the marks correspond to those of the true disaster process. Let θ0
2 denote the

parameters that govern this defining MPP. Using Eqs. (2.10), (2.11), and (2.12), an

unconditional moment restriction that identifies θ0
1 can be written comprehensively

as:

E[price(xit;θ
0
1);θ

0
2]

1 −E[dt;θ
0
2]

=
1 −E[price(yit;θ

0
1);θ

0
2]

1 −E[dt;θ
0
2]

, (2.13)

which highlights the dependence on the disaster process described by the defining

10
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MPP. This reformulation of the basic asset pricing equation motivates an econometric

strategy to replace the unconditional population moments in Eq. (2.13) by sample

moments, as well as to exploit the resulting moment matches to estimate θ0
1. As a

distinctive feature, it uses actual data to compute sample moments for the left-hand

side of Eq. (2.13), but to take account of the inherent sample selection problem,

it relies on simulated moments for the right-hand side. This differential treatment

of the left- and right-hand sides of Eq. (2.13) is the reason we do not cancel the

common denominator.

Eq. (2.13), as Dridi et al. (2007) assert, intrinsically defines the preference

parameters by an economic paradigm (the existence and specification of an SDF) and

it highlights, through its dependence on the MPP parameters, the role of the disaster

process. It thus represents an operationalization of Blanchard’s (2008) suggestion to

rely on the basic asset pricing equations when allowing for rare disaster risk.

We concede that there may be limited theoretical justification for the assumption

of a representative agent; in this study, we require everyone to have identical EZW

preferences. Nevertheless, we treat the representative agent as a real individual when

assessing the plausibility of the preference parameter estimates. Put differently, we

start from the premise that the EZW-SDF in Eq. (2.2), equipped with reasonable

values for time discount factor, RRA, and IES, can price assets that are traded in

real markets – the economic reality that Dridi et al. (2007) call on researchers to

capture.5

5 Our approach supports the use of other pricing kernels as well. For example, we provide a
robustness check using the power utility SDF.
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3 Econometric strategy

3.1 Motivating a two-step approach

In this section, we motivate and outline our econometric strategy before turning to its

concrete implementation in the next section. From Dridi et al.’s (2007) econometric

analysis of DSGE models, we adopt their distinction of two types of parameters.

The parameters of the first type (“economic parameters of interest”) account for

an economic agent’s preferences, like aversion to risk, and they can be interpreted

accordingly. For the current study context, these type 1 parameters are those in θ0
1.

Dridi et al.’s (2007) type 2 parameters (“structural statistical parameters”) are not

directly associated with economic behavior, but they take account of aspects of the

distribution of the model variables that are necessary to generate model-implied data

in the course of a simulation-based estimation procedure. In the present context,

they are the parameters that govern the defining MPP, θ0
2.

As is a hallmark of calibration studies, but in contrast with standard econometric

analysis, we rely on profoundly different data sources. The information about disaster

events needed to estimate the parameters of the defining MPP can be retrieved

from historical multi-country panel data. Unfortunately, these data do not contain

much information about financial variables, which necessitates the calibration of

some parameters. The data typically used for asset pricing studies instead are rich

in terms of information about the time-series properties and the cross-section of

asset prices, but they contain little information about disaster events. The two-step

approach described hereafter is designed to make use of the disparate data sources in

a coherent way by estimating the parameters of the defining MPP in the first step,

then using the results for a simulation-based estimation of the preference parameters

in the second.

12
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3.2 First-step strategy

We have emphasized the significance of the defining MPP that, endowed with

parameter values θ0
2 and combined with the basic asset pricing equation, identifies

the economic parameters of interest. The objective in the first step is thus to estimate

the MPP parameters, which entails providing a specification of the defining MPP.

For that purpose, one could consider Hamilton and Jordà’s (2002) autoregressive

conditional hazard model for ht in Eq. (2.6) or transfer ideas from natural disaster

literature to take account of the spatial distribution of consumption contractions

(e.g., Ogata (1998)). The conditional distribution of the marks also can be specified

in a more or less complex way. The Bayesian analysis by Nakamura et al. (2013),

for example, assumes an elaborate distribution of contractions over the course of a

multi-period disaster event. The frequentist approach pursued herein must take into

account more prudently the information content of the available data.

In general, and adopting the notation of Hamilton and Jordà (2002), we can write

the conditional joint density of the points and marks of the multi-period disaster

MPP as follows:

f(dt,y
d
t ∣Υt−1;θ21,θ22) = f(dt∣Υt−1;θ21) × f(y

d
t ∣dt,Υt−1;θ22)

= [ht(θ21)]
dt × [1 − ht(θ21)]

1−dt × (fM(ydt ;θ22))
dt
,

(3.1)

where fM(ydt ;θ22) denotes the density of the marks ydt , conditional on Υt−1 and dt = 1.

The K ×1 vector θ21 contains the parameters that govern ht, and the L×1 vector θ22

denotes parameters of the conditional distribution of the marks. We note that some

marks of interest will not be available due to data limitations – financial returns

during disaster events are hard to obtain – such that ydt is a subset of the marks of

interest. To allow for a different distribution of marks (in particular the contractions)

prior to reaching the disaster threshold q, compared with the distribution after q has
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been reached, we can use:

f(ydt ∣dt,Υt−1;θ22) = (fM(ydt ;θ
+
22)

d+t × fM(ydt ;θ
−
22)

1−d+t )
dt
, (3.2)

where fM(ydt ;θ
+
22) denotes the density of the marks conditional on Υt−1, dt = 1, and

d+t = 1, whereas fM(ydt ;θ
−
22) is the density of the marks conditional on Υt−1, dt = 1,

and d+t = 0. Moreover, θ22 = (θ−22
′,θ+22

′)′.

Anticipating limitations of data availability, we have to acknowledge that some

MPP parameters, which describe the contemporaneous dependence of consumption

and return contraction factors, are unidentified and must be obtained from calibrator’s

knowledge. The parameters to be calibrated are collected in the vector θ23; thus, the

complete vector of MPP parameters is given by θ2 = (θ21
′,θ22

′,θ23
′)′. The density

f(dt,ydt ∣Υt−1;θ21,θ22) in Eq. (3.1) is specified, such that it does not depend on θ23,

and the estimation of θ0
21 and θ0

22 is not affected by the choice of calibrated values

θ̄23.6

If discrete-valued time series data are available, from which multi-period disaster

events and the associated contractions can be identified, the estimation of θ0
21 and

θ0
22 can be performed as described by Hamilton and Jordà (2002). The strategy to

obtain the parameter estimates is maximum likelihood (ML) with the associated

parametric inference and testing procedures. Eqs. (3.1) and (3.2) imply the following

conditional log-likelihood function:

L(θ21,θ22) =
T1

∑
t=1

(dt lnht(θ21) + (1 − dt) ln[1 − ht(θ21)])

+
T1

∑
t=1
dt (d

+
t ln fM(ydt ;θ

+
22) + (1 − d+t ) ln fM(ydt ;θ

−
22)) ,

(3.3)

where T1 denotes the number of time periods (e.g., quarters) in the first-step data

set. The maximization of the log-likelihood in Eq. (3.3) with respect to the unknown

6 We address the calibration of θ23 in detail in Section 4.2.
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parameters yields the ML estimates θ̂21 and θ̂22. As noted supra, we conceive of

the defining MPP as a model of the disaster process, but one that implies the

same disaster probabilities and conditional distribution of the marks as the true

data-generating process. Assuming that the defining MPP is correctly specified,

then under standard assumptions for extremum estimators (e.g., Hansen (2012)),

θ̂21 →
p
θ0
21 and θ̂22 →

p
θ0
22.

7 A specification of the defining MPP, endowed with the

estimates θ̂21 and θ̂22 as well as the calibrated values θ̄23 is an essential input for

the second estimation step.

3.3 Second-step strategy

The moment restriction in Eq. (2.13) captures the asset pricing implications of a

disaster-including C-CAPM and provides the basis for a simulation-based estimation

of the economic parameters of interest θ0
1. In this section, we motivate a strategy

that entails estimating θ0
1 by matching the sample equivalents of the moments in Eq.

(2.10) with simulated moments used for Eq. (2.12). The first-step estimates θ̂21 and

θ̂22, together with the calibrated values θ̄23, serve to perform the data simulation.

Assuming that the data series used in the second step span T2 periods and contain

the necessary consumption and return information, a sample equivalent to Eq. (2.10)

can be computed as:

H i
T2
(θ1) ≡

1
T2
∑
T2
t=1mt(θ1)xit

1 − 1
T2
∑
T2
t=1 dt

=
1

T2 −∑
T2
t=1 dt

T2

∑
t=1
mt(θ1)x

i
t. (3.4)

As we detail in the Online Appendix, our proposed estimation strategy requires

that a uniform law of large numbers (LLN) holds, such that the sample moments

7 If θ21 and θ22 have no parameter in common, it is possible to perform the parameter estimation
separately. The estimate θ̂21 can be obtained by maximizing the first part of the log-likelihood
function in Eq. (3.3) with respect to θ21, whereas θ̂22 can be obtained by maximizing the second
part with respect to θ22.
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in (3.4) converge to the population moments in Eq. (2.10). Asymptotic concerns

aside, H i
T2

would be expected to provide a useful approximation of its population

counterpart in finite samples, because the sample size available for application is

large compared with the number of disaster periods. Disasters are by definition rare

events; it may be that in the sample used for second-step estimation, dt = 0 for all

periods. Accordingly, we should expect that the approximation

H i
T2
(θ0

1) ≈
E[price(xit;θ

0
1);θ

0
2]

1 −E[dt;θ
0
2]

(3.5)

works well for realistic T2. However, the approximation of population moments by

sample moments fails for Eq. (2.12). Due to the rarity of disastrous consumption

contractions, the data frequently used for empirical asset pricing studies contain very

few, if any, disaster observations. The sample equivalents of the moments in Eq.

(2.12) therefore must be computed on the basis of a very small number of observations

or will not be available in the first place, as in the case of post-WWII U.S. data.8

However, by using a specification for the defining MPP, we can simulate con-

sumption and return data and thereby approximate the population moments in

Eq. (2.12) by simulated moments. With the same intent for which Singleton (2006,

p. 254) advocates using the simulated method of moments (SMM), namely, that

“more fully specified models allow experimentation with alternative formulations

of economies and, perhaps, analysis of processes that are more representative of

history for which data are not readily available,” the MPP simulation should produce

consumption and return data from alternative histories that include multi-period

disasters. Accordingly, we use the first-step estimates θ̂21 and θ̂22 and the calibrated

MPP parameter values θ̄23 to provide simulated moments for an approximation of

8 The United States faced only two major consumption downturns during the 20th century (see
Figure 2). Julliard and Ghosh (2012) propose an empirical likelihood estimation strategy to
take account of the problem by over-weighting such rare disaster events.
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the expected values in Eq. (2.12),

H̃ i
T2
(θ1, θ̂2) ≡

1 − 1
T (T2)

T (T2)
∑
s=1

m̃s(θ1, θ̂2)ỹis(θ̂2)

1 − 1
T (T2)

T (T2)
∑
s=1

d̃s(θ̂2)

, (3.6)

where θ̂2 = (θ̂21
′, θ̂22

′, θ̄23
′)′. The tildes indicate simulated variables, and T (T2) is

the simulation sample size generated for a given sample size T2 of actual observations,

with T (T2) → ∞ as T2 →∞, such that the simulation should achieve:

H̃ i
T2
(θ0

1, θ̂2) ≈
1 −E[price(yit;θ

0
1);θ

0
2]

1 −E[dt;θ
0
2]

. (3.7)

Duffie and Singleton (1993) work out preconditions in which it is permissible to

use simulated moments to approximate population moments in an SMM application.

They refer to the non-stationarity of the simulated data and their dependence on

parameters that change during the estimation procedure, which raises the question

of the applicability of an LLN. In Section O.2 of the Online Appendix, we transfer

their results to the present framework.

These considerations motivate the strategy to estimate the preference parameters

θ0
1 by matching the sample moments in Eq. (3.4) with the simulated moments in

Eq. (3.6). For that purpose, we use the returns on N > 2 test assets and construct a

vector that contains those moment matches:

GT2(θ1, θ̂2) = [G1
T2
(θ1, θ̂2), . . . ,G

N
T2
(θ1, θ̂2)]

′, (3.8)

where

Gi
T2
(θ1, θ̂2) =H

i
T2
(θ1) − H̃

i
T2
(θ1, θ̂2). (3.9)

As outlined in Appendix A.1, GT2(θ1, θ̂2) alternatively may consist of a combination

of moment matches that involve both returns and excess returns. An estimator of θ0
1
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is then obtained by minimizing an SMM-type criterion function,

θ̂1 = arg min
θ1∈Θ1

GT2(θ1, θ̂2)
′WT2GT2(θ1, θ̂2), (3.10)

where WT2 is a symmetric and positive semi-definite distance matrix that converges

in probability to a non-stochastic matrix W as both T1 and T2 tend to infinity. Θ1

denotes the admissible parameter space for the economic parameters of interest.

In Section O.2 of the Online Appendix, we state the sufficient conditions under

which θ̂1 →
p
θ0
1 as both T1 and T2 tend to infinity. For that purpose, we adapt

results from Duffie and Singleton (1993). First, we assume that the defining MPP is

correctly specified. The parameters of the defining MPP, θ0
21 and θ0

22, are assumed

to be consistently estimated, while the unidentified MPP parameters are assumed

to be obtained from calibrator’s knowledge, such that θ̄23 = θ0
23. Second, θ0

1 and θ0
2

must uniquely satisfy the reformulated pricing equation (2.13). Further assumptions

pertain to the stationarity and ergodicity of the variables that appear in Eq. (2.13),

as well as technical assumptions that allow the application of uniform LLNs to the

simulated and sample moments.

These assumptions are quite general. Their verification in particular situations

would require endowing the disaster-including C-CAPM with more structure. How-

ever, because our strategy to assess the RDH empirically heeds Blanchard’s (2008)

advice to focus on the basic asset pricing equation without further elaborations,

the verification of these high-level assumptions is, to some extent, inapplicable and

beyond the scope of this study.

Usual asymptotic inference can be used for the first step, but inference about

the second-step estimates must take account of several peculiarities of the empirical

strategy. First, it is a sequential approach in which the first-step estimates affect the

distribution of the second-step estimates. Second, the preference parameter estimates
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are obtained by a simulation-based estimation procedure, for which standard SMM

or indirect inference results do not apply. Third, the data used in the two steps have

not only different lengths but also diverse origins (historical multi-country panel data

and country-specific financial and economic data).

Each of these aspects itself poses a methodological challenge that has been

addressed independently, yet not jointly, in previous literature.9 To characterize the

limit distribution of the second-step estimates, we note that both steps involve an

extremum estimator, and we can stack the first-order conditions of the first- and

second-step optimization problems such that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
∂GT2

(θ̂1,θ̂2)′

∂θ1
WT2

IL+K 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

FT1(θ̂21, θ̂22)

GT2(θ̂1, θ̂2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (3.11)

where

FT1(θ̂21, θ̂22) =
1

T1

T1

∑
t=1

∂lt(θ̂21, θ̂22)

∂(θ21
′,θ22

′)′
, (3.12)

with IL+K as the identity matrix of order L +K, and lt as the period t contribution

to the log-likelihood function in Eq. (3.3). With an intermediate-value expansion

of FT1 and GT2 about θ0
1, θ

0
21, and θ0

22, we can solve for the sampling error, which

then enables a characterization of the limit distribution of the second-step estimates

θ̂1. We outline the details of this procedure in Section O.3 of the Online Appendix.

The resulting limit distribution of θ̂1 emerges as a mixture of a Gaussian and a

non-standard distribution, and it is not directly usable for empirical research.

Because applicable asymptotic results are not available, we account for estimation

9 For example, Grammig and Küchlin (2018) adopt a strategy outlined by Newey and McFadden
(1994) to provide the asymptotic distribution theory for a simulation-based sequential estimation
of Bansal and Yaron’s (2004) long-run risk (LRR) model. The efficient use of samples from
different periods for GMM estimation is addressed by Singleton (2006, Ch. 4.5) and Lynch and
Wachter (2013). Nakamura et al. (2013) use multi-country data for the Bayesian estimation of
the parameters of a consumption process, which serve in a second step to obtain the posterior
distribution of the RRA coefficient and the equity premium by matching moments of U.S. data.
We borrow elements from that literature.
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uncertainty by extending the second-step data simulation procedure to repeatedly

produce artificial samples, on which we perform the parameter estimation. With

the resulting empirical distributions, we can compute simulation-based confidence

intervals and standard errors for the model parameters and model-implied indicators

of interest.

3.4 Identifying the IES: caveat and solutions

The described empirical idea can be extended and specialized. One such modification

involves the estimation of the intertemporal elasticity of substitution.

The recursive utility specification with the associated SDF in Eq. (2.2) is theo-

retically appealing but also creates econometric challenges. Thimme (2017) points

out that the joint estimation of the preference parameters β, γ, and ψ that relies

exclusively on moment restrictions that result from conditioning down the asset

pricing equation (2.1) may yield an unstable IES estimate. This caveat in principle

applies to any empirical asset pricing study that uses the EZW-SDF in Eq. (2.2).10

We therefore consider a modification of the second step to reflect an alternative

approach for estimating the IES.11 This approach relies on a log-linearization of

the Euler Equation (2.1) outlined by Yogo (2004), which leads to the regression

equation

rt = κ +
1

ψ
gt + ηt, (3.13)

where rt = lnRt, gt = lnGt, κ is a constant, and ηt is an error term. The derivation of

(3.13) implies that ηt is correlated with gt, so a linear projection of rt on gt and a

constant does not identify the IES. Instead, κ and ψ are identified by the following

10 For example, Bansal et al. (2007) report that the efficient method of moments objective function
used to estimate the parameters of the EZW-SDF is flat in ψ, so they fix ψ = 2.

11 Garcia et al. (2006) propose an interesting alternative approach to identify the IES by allowing
for a reference level of consumption.
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moment restrictions:

E [(rt − κ −
1

ψ
gt)zt−1] = 0, (3.14)

where zt−1 consists of instrumental variables that are known at t − 1 and correlated

with gt – typically, lagged consumption growth and asset returns. Eq. (3.14) is

assumed to be uniquely satisfied at the values ψ = ψ0 and κ = κ0. Eq. (3.13) in

principle applies to any asset return, but most applications use a low-risk asset (often

the T-bill) or a market portfolio proxy.

This strategy for estimating the IES is not new (see Campbell’s (2003) survey).

The novelty is that we allow for the possibility of rare disasters. Leveraging the idea

from Section 2, we apply the LTE to Eq. (3.14) to obtain restrictions that involve

moments that include only disaster-free data and moments that include disaster

marks. We assume that the instruments are taken from period t− j, where j ≥ 1, and

we define:

d∗t =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if dt = 0 and dt−j = 0,

1 if dt = 1 or dt−j = 1.
(3.15)

Moreover, let p∗ = Pr(d∗t = 1) = E[d∗t ].
12 We can then rewrite Eq. (3.14), correspond-

ing to Eq. (2.8), to obtain:

E [(rt − κ −
1

ψ
gt)zt−1∣d

∗
t = 0] = −

p∗E [(rt − κ −
1
ψgt)zt−1∣d∗t = 1]

1 − p∗
. (3.16)

Recycling our empirical idea, the left-hand side moments in Eq. (3.16) can be

approximated by sample means using regular disaster-free data, and the right-hand

side moments can be simulated. Applying the reasoning that led to Eq. (3.6), we

12 An analogous definition of d∗t and p∗ applies when instruments are taken from multiple lagged
periods.
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obtain additional moment matches, namely,

G+
T2
(κ,ψ, θ̂2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

T2 −∑
T2
t=1 d

∗
t

T2

∑
t=1
ηtzt−1(1 − d

∗
t ) −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
T (T2)

T (T2)
∑
s=1

η̃sz̃s−1d̃∗s

1 − 1
T (T2)

T (T2)
∑
s=1

d̃∗s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.17)

where η̃s = r̃s −κ−
1
ψ g̃s, using an abbreviated notation in which the dependence of the

simulated variables on the defining MPP parameters θ̂2 is suppressed. To integrate

this approach in the setting outlined in the previous section, the moment matches in

Eq. (3.17) could augment those in Eq. (3.8). Alternatively, the IES can be estimated

separately using:

[
κ̂

ψ̂
] = arg min

(ψ,κ)′∈Θ+

= G+
T2
(κ,ψ, θ̂2)

′W+
T2
G+
T2
(κ,ψ, θ̂2), (3.18)

where Θ+ is the admissible parameter space for (ψ,κ)′. The properties of W+
T2

are

analogous to those of WT2 . This estimation variant also can be embedded in the

general setting of Section 3.3. For that purpose, we exploit the first-order conditions

for a minimum of the criterion function in Eq. (3.18), which imply that a linear

combination of the moment matches in Eq. (3.17) is set to 0, and thus:

AT2(κ̂, ψ̂, θ̂2) ⋅G
+
T2
(κ̂, ψ̂, θ̂2) = 0, (3.19)

where AT2(κ̂, ψ̂, θ̂2) =
∂G+

T2
(κ̂,ψ̂,θ̂2)′

∂(κ,ψ)′ W+
T2

. Accordingly, we augment the moment

matches in Eq. (3.8), such that

ḠT2(κ,θ1, θ̂2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GT2(θ1, θ̂2)

AT2(κ,ψ, θ̂2) ⋅G+
T2
(κ,ψ, θ̂2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.20)

and we use ḠT2(κ,θ1, θ̂2) instead of GT2(θ1, θ̂2) in Eq. (3.10). Then κ becomes

an additional parameter to be estimated. Assigning large weights to the last two

moment conditions via WT2 ensures that the IES will be identified by Eq. (3.16). The

22

Electronic copy available at: https://ssrn.com/abstract=3377345



claim of consistency using this alternative second-step estimator can be maintained,

provided that the set of assumptions is suitably modified (see Online Appendix O.2).

4 Implementing the econometric strategy

In this section, we outline the implementation of the proposed methodology. We first

describe the available data and how they are processed for our purposes in Section

4.1. In Section 4.2, we consider specifications for the defining MPP, and we identify,

recognizing the limitations of the data, which of its parameters are estimable and

which must be calibrated. Section 4.3 outlines the implementation of the second

estimation step, and presents an approach to account for estimation uncertainty. For

quick reference, Table 1 provides an synoptic overview of the implementation.

[insert Table 1 here]

4.1 Data base and data processing

Due to the nature of rare disaster events, the implementation of the proposed strategy

entails a course of action that is unusual in econometrics but common in calibration

studies: the use of heterogeneous data sources for the empirical analysis. To deal with

the specification, estimation, and calibration of the defining MPP in the first step,

we use the multi-country consumption data collected by Barro and Ursúa (2008).13

We extract data for the same 35 countries selected by Barro (2006); Table 2 lists

these countries and the years for which data are available.

[insert Table 2 here]

13 These unbalanced panel data for 42 countries feature prominently in RDH liter-
ature. They are available at https://scholar.harvard.edu/barro/publications/

macroeconomic-crises-1870-bpea, accessed 04/24/2015.
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We edit the raw data in the following ways: To detect consumption disasters, we

adopt Barro’s (2006) identification scheme, which implies that any downturn in

aggregate consumption over consecutive periods that is greater than or equal to

q = 0.145 qualifies as a disaster event.14 A disaster may build up over multiple periods

or occur as one sharp contraction. For the purpose of disentangling contraction

factors bt from regular consumption growth Gr
t according to Eq. (2.4), we follow

Barro (2006) and assume that during a disaster, Gr
t is equal to 1, such that bt = 1−Gt.

We emphasize here that holding Gr
t fixed during a disaster only serves to identify

the contraction components bt in the data. The empirical analysis allows for a

time-varying regular consumption growth component.15

To enable the first-step analysis, the data are represented in event time; that

is, the country-specific time series are concatenated, and sequences of the disaster

indicators dt, d+t , and d∗t are computed for every country. The disaster period counter

N(t) is reset to 0 whenever a country change occurs within the concatenated data.

The same reset is applied to another function M(t), which counts the number of

disaster events that occurred as of t. This identification scheme detects 89 disaster

events. Figure 1 shows their distribution across countries and over time.

[insert Figure 1 here]

Initially, Barro and Ursúa’s (2008) data only permit the computation of annual

contractions. To align the data with the assumed quarterly decision frequency, we

generate quarterly observations by drawing from a standard uniform distribution to

decide which fraction of an annual contraction is attributed to the first quarter of a

disaster year. Another draw determines how much of the remainder is allocated to

14 The same threshold is used by Barro (2009) and Barro and Jin (2011); it will be varied in our
robustness checks.

15 As an alternative identification strategy, Barro (2006) uses mean gross consumption growth for
Gr

t . Using Gr
t = 1 produces more benign contractions, which anticipates the caveat that their

sizes may be purposefully inflated.
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the second quarter. The same procedure gives the third quarter contraction, and the

fourth takes what is left. This algorithm implies that the contraction in the first (last)

quarter would be the largest (smallest), on average. To avoid such a seasonal pattern,

the four contractions are randomly re-shuffled. The described procedure applies to a

“within disaster” year, one that is not the first or last year of a disaster event. When

dealing with the first (last) year of a disaster, or if it consists of a single annual

contraction, we determine the quarter when the contraction begins (ends) by a draw

from a discrete uniform distribution, such that each quarter has a 25% probability of

becoming the quarter when the disaster begins (ends). The annual contraction is

then distributed across the disaster quarters by applying the procedure for a within

disaster year. Subsequently, the three disaster indicators are re-computed using the

quarterlized, concatenated data, for which we have T1 = 16,984 country/quarters.

Counting the number of quarters between disaster events gives τm, the duration

between the mth and the (m + 1)th disaster, and the number of quarters that the

mth disaster event lasts is denoted by τ∗m.

Figure 2 illustrates the described procedure, using the U.S. subsample within

Barro and Ursúa’s data. It shows the quarterly contractions associated with the two

U.S. disaster events detected during 1870-2009: the Great Depression (1930-1933)

and another (1918-1921) that is linked to the consequences of World War I and the

Spanish influenza pandemic.

[insert Figure 2 here]

The data used for the implementation of the second step, the estimation of

the economic parameters of interest, are common in asset pricing literature. In

particular, we use quarterly U.S. real personal consumption expenditures per capita

on services and nondurable goods in chained 2009 U.S. dollars, as provided by the
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Federal Reserve Bank of Saint Louis.16 The data span the period 1947:Q2–2014:Q4,

such that T2 = 271 quarters. No disaster event occurred during this time interval,

which, as outlined supra, does not pose a problem for the application of the proposed

methodology. Financial data covering the same period, but at a monthly frequency,

are retrieved from CRSP and K. French’s data library.17 The data extracted for

the empirical analysis are (1) the ex ante T-bill return; (2) the return on the CRSP

market portfolio, comprised of NYSE, AMEX, and NASDAQ traded stocks (mkt);

(3) the returns on ten size-sorted portfolios (size dec); and (4) the returns on the ten

industry portfolios (industry). All portfolios are value-weighted. The gross return on

the CRSP market portfolio serves as a proxy for the wealth portfolio return Ra.18

Monthly nominal returns are converted to quarterly real returns using the growth of

the consumer price index of all urban consumers.19 Following Beeler and Campbell

(2012), we approximate the ex ante T-bill return by forecasting the ex post return

on the basis of the quarterly T-bill yield and the average of quarterly log inflation

across the past year. The three-month nominal T-bill yield comes from CRSP. Table

3 provides descriptive statistics for these data.

[insert Table 3 about here]

There are two caveats regarding the use and combination of these disparate

data sources. First, a critic might ask whether the multi-country data collected by

Barro and Ursúa (2008) are appropriate to estimate the parameters of a multi-period

16 For services, see http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA. For
nondurable goods, see http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA.
Both accessed 03/09/2016.

17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_

factors.html, accessed 03/09/2016. Due to the frequent changes in the underlying
CRSP data, newer or older downloads may results in different series.

18 The approximation of the return on the wealth portfolio by the return on the portfolio of
financial assets is also employed by Weber (2000), Stock and Wright (2000), and Yogo (2006).

19 These data are provided by the Federal Reserve Bank of Saint Louis:
http://research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 03/09/2016.
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disaster MPP that will be used to simulate moments to be matched with the disaster-

free U.S. data in the second step. Alternatively, U.S. studies may gauge disaster

probabilities entirely on a single event: the Great Depression.20 We concur with

Barro and Ursúa’s (2008, p. 275) view that the likelihood, duration, and severity of a

disaster, as perceived by U.S. investors, might be better accounted for by “consulting

the global experience rather than overweighting the U.S. own history, for which

the few observations are likely to be dominated by luck.” Second, a shortcoming

of Barro and Ursúa’s (2008) data is that they provide insights about historical

consumption disasters, but only limited financial information. Due to low trading

volumes, dried-up liquidity, or market shut-downs, asset prices are unreliable, hard

to come by, or unavailable during a disaster, as noted by Blanchard (2008). Prudent

specifications of the defining MPP therefore should be parsimonious, and it will be

necessary to calibrate some of its parameters.

4.2 First-step implementation: MPP estimation and cali-

bration

The specifications for the defining MPP that we consider for the first-step imple-

mentation facilitate the separate treatment of the parameters θ0
21 (points) and θ0

22

(marks). The alternative specifications of the discrete-time hazard rate that we

consider relate to the work of Hamilton and Jordà (2002). Specifically, we rely on

the time durations of and between previous disaster events, the aggregate size of the

previous disaster, and the size of the contraction of the last disaster period to predict

20 Comprehensive financial data for the U.S. did not exist at the time of the first disaster event
depicted in Figure 2.
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ht. The most general specification considered can be compactly written as:

ht = [[(µ + ατM(t−1)−1 + δb
+
M(t−1))(1 − dt−1)

+(µ∗ + α∗τ∗M(t−1)−1 + δ
∗bN(t−1))dt−1](1 − d

+
t−1) + d

+
t−1]

−1
,

(4.1)

where bn is the contraction size associated with the nth disaster period, and b+m

denotes the aggregate size of the mth disaster.21 For the empirical analysis, we

explore specific cases of Eq. (4.1). The most parsimonious variant, referred to as

CH0, uses δ = δ∗ = α = α∗ = 0, such that Eq. (4.1) becomes:

ht =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

µ−1 if dt−1 = 0,

µ∗−1 if dt−1 = 1 and d+t−1 = 0,

1 if dt−1 = 1 and d+t−1 = 1.

(4.2)

The most comprehensive alternative, referred to as CH1, estimates all parameters in

Eq. (4.1). The CH2 variant allows for an effect of the durations between disasters

and the disaster length on ht (with δ = δ∗ = 0). Version CH3 allows the magnitude of

the previous disaster and the size of the contraction of the previous disaster period to

affect the hazard rate (with α = α∗ = 0). In the CH4 specification, the aggregate size

of the previous disaster can have an effect on ht, but the contraction of the previous

disaster period does not (δ∗ = α = α∗ = 0).

Because financial returns are not contained in Barro and Ursúa’s (2008) data,

the implementation of the log-likelihood in Eq. (3.3) must focus on the important

mark that is available: the consumption contraction factor bt. To account for the

distribution of bt conditional on a disaster event, we draw on Barro (2006) and

Barro and Jin (2011) and employ a Pareto distribution to describe the transformed

21 While consumption growth is the process that defines a disaster event, one could also consider
using past return contractions to explain the hazard rate. However, limited financial information
in the Barro and Ursúa (2008) data restricts the generality of the specification of ht.
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contraction size zt = 1/(1 − bt).22 As allowed for in Eq. (3.2), the contractions that

contribute to reaching the disaster threshold q can have a different distribution than

those that add to a disaster after q has been reached. Using ht as specified in (4.1),

the implementation of the log-likelihood in Eq. (3.3) thus reads:

L(θ21,θ22) =
T1

∑
t=1

(dt lnht(θ21) + (1 − dt) ln[1 − ht(θ21)])

+
T1

∑
t=1
dt (d

+
t ln fP(zt; θ

−
P) + (1 − d+t ) ln fP(zt; θ

+
P))) ,

(4.3)

where fP(⋅; θP) denotes the Pareto density function with parameter θP and threshold

value 1. Moreover, θ21 = (µ,α, δ, µ∗, α∗, δ∗)′ and θ22 = (θ−P, θ
+
P)

′. Estimates of these

MPP parameters are obtained by maximizing L(θ21,θ22) based on the concatenated

event time data described in Section 4.1.23

By proceeding in this way, we can only estimate a subset of the parameters of the

defining MPP. We did not yet account for the joint distribution of the consumption and

return contractions or the marginal distribution of the latter. Therefore, calibrating

the remaining parameters of the defining MPP becomes inevitable. We approach

this issue as follows: First, we assume that the transformed contractions z and

zi = 1/(1 − ci) are random variables that are described by same marginal c.d.f.,

F (⋅; θ+P, θ
−
P) = FP(⋅; θ

+
P)

d+ × FP(⋅; θ
−
P)

1−d+ . (4.4)

Second, we assume that the bivariate c.d.f. of z and zi can be written using a Gaussian

22 Barro and Jin (2011), who assume single-period disasters, use a double power-law distribution
that consists of two power-law distributions that morph into each other at a certain threshold
value. We find though that the flexibility of the double power-law distribution is not required
when modeling multi-period disasters.

23 Using the hazard rate specification in Eq. (4.1), τ0 is re-initialized to reflect the average duration
between disasters (179.7 quarters), τ∗0 is reset to equal the average disaster length (13.1 quarters),
and b+0 is reset to equal the average contraction size (0.268) whenever a country change occurs in
the concatenated data. These values are also the initial values used for the optimization. They
correspond to q = 0.145; different disaster thresholds use different initial values. This procedure
is adopted from Engle and Russell (1998).
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copula function with parameter ρi:

Fz,zi(z, z
i) = Φ2 (Φ−1[F (z; θ+P, θ

−
P)],Φ

−1[F (zi; θ+P, θ
−
P)];ρ

i) , (4.5)

where Φ denotes the standard normal c.d.f., and Φ2 is the c.d.f. of the standard

bivariate normal distribution. The copula correlations are treated as parameters

to be calibrated.24 For a base variant, we calibrate ρi to the empirical correlation

between non-disastrous consumption growth and gross return, calculated on the data

used for the second stage. We also consider an extreme alternative and calibrate

ρi = 0.99 for all i, similar to Barro and Ursúa (2008), and drawing on Longin and

Solnik’s (2001) insight that the dependence between financial returns increases in

the tails of the joint distribution. Another calibration assumes ρi = 0 for all i, which

implies that return and consumption contractions are independently drawn from the

same distribution.

Among the asset returns of interest, the T-bill return (denoted Rf
t ) receives

special treatment, drawing on Barro’s (2006) observation that a partial government

default occurs in 42% of the disasters identified in the data for the aforementioned

35 countries. To take account of this finding, we define by dft a binary indicator that

equals 1 if the T-bill return is affected in case of a disaster and 0 otherwise, and we

assume that

Pr(dft = 1∣dt = 0) = 0,

Pr(dft = 1∣dt = 1, dt−1 = 0) = pf , and

Pr(dft = 1∣dt = 1, dt−1 = 1) = dft−1.

24 We also probe alternative copulas, in particular rotated Clayton and Frank. These copulas are
convenient for our purposes because, like the Gaussian, they allow us to perform the draws from
the bivariate distribution of the second random variable conditional on the draws of the first. As
we outline subsequently, this feature is very useful when simulating data in the second estimation
step. The results of using these alternative copulas, which are qualitatively not different from
the Gaussian base case, are presented in the Online Appendix, Section O.4.
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Using Barro’s (2006) result, we calibrate pf = 0.42 and modify Eq. (2.5), such that

Rf
t = R

fr
t (1−cft )

dft . Accordingly, whether the T-bill return contracts during a disaster

is determined at the onset of the event. The treatment and calibration of the joint

distribution of the contraction factors cft and bt conditional on dft = 1 are analogous to

that of the other asset returns (identical marginal distributions and copula approach).

The vector of calibrated MPP parameters thus reads θ23 = (ρ1, . . . , ρM , pf)′, where

M denotes the number of assets considered in the analysis, including the T-bill and

the market return proxy.

4.3 Second-step implementation: Moment matches and data

simulation

For the implementation of the second step of the proposed methodology, we rely

on the variant of the moment matching approach that combines excess returns and

the return of a reference asset. We use the T-bill return as the reference return and

the excess returns Rei = Ri −Rf on N test assets.25 The test assets considered are,

alternatively, the size-sorted portfolios (size dec, N = 10), the industry portfolios

(industry , N = 10), and the CRSP market portfolio (mkt, N = 1) described in Section

4.1. Furthermore, we implement the IES identification strategy outlined in Section

3.4, using the T-bill return for the left-hand side of Eq. (3.13), and as instruments

25 See Eq. (A-7). This combination of test assets, using a risk-free rate proxy along with a set of
excess returns of stock portfolios, is common practice in GMM-based testing of asset pricing
models (e.g., Cochrane (1996)).
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twice-lagged log T-bill return and log consumption growth, following Yogo (2004).26

The identity matrix is used for W+
T2

, and WT2 in Eq. (3.10) is a diagonal matrix

containing ones, except for the last two entries, which are large to facilitate the IES

identification by the moment conditions in Eq. (3.16).

The simulation of disaster-including data is performed as follows: Using the

estimates θ̂21 and θ̂22 for the assumed specification of the defining MPP, we generate

a series of discrete-time hazard rates h̃s, with T (T2) = 107. With this series, we

simulate the disaster indicators d̃s, d̃+s , d̃∗s , and d̃fs .27 If the simulation yields d̃s = 1,

or d̃fs = 1 in case of the T-bill, we simulate consumption and return contractions

by drawing a random variable ws and random variables wis (one for each return

of interest, conditional on the same draw of ws) from bivariate standard normal

distributions with the respective calibrated copula correlation ρi. Consumption

growth and return contraction factors are then obtained by

b̃s = 1 −
1

F −1(Φ(ws); θ̂+P, θ̂
−
P)

and c̃is = 1 −
1

F −1(Φ(wis); θ̂
+
P, θ̂

−
P)
. (4.6)

As of yet, we have not made distributional assumptions about the regular consumption

and return components Gr
t and Rr

t . For the identification of the consumption

contractions in Barro and Ursúa’s data, we have fixed Gr
t = 1, but for the simulation

of disaster-including data, we allow for time-varying regular consumption and return

26 In principle, we could also use a stock or a portfolio return or, as in Yogo (2004), a set of
returns in a GMM approach. We choose the T-bill return because of its higher predictability
by instrumental variables. Vissing-Jørgensen and Attanasio (2003, p. 387) observe that using
stock index returns results in smaller estimates of ψ than with T-bill returns, which they posit
might be caused by “the much lower predictive power of the instruments for stock returns which
could lead to poorer small-sample properties of the estimator.” This argument is supported
by Thimme (2017), who presents fixed income returns as the usual return proxy. Section O.5
of the Online Appendix provides an extended discussion on the choice of the reference return,
an alternative specification of the Eq. (3.13), and additional empirical results obtained from
alternative returns and regression specifications. These additional analyses show that the results
are robust, as long as the T-bill remains part of the set of reference assets.

27 For notational brevity, we use the shorthand notation that suppresses the dependence of the
simulated values on the estimated/calibrated parameters of the defining MPP.
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components. We avoid additional distributional assumptions and simulate series of

length T (T2) of regular consumption growth and returns, G̃r
s and R̃r

s, by drawing

with replacement from the disaster-free U.S. postwar data. The draws preserve the

contemporaneous dependence between variables; to allow for serial dependence, we

use a block-bootstrap simulation.28 By combining the simulated contraction factors

with the simulated regular return and growth series, we generate disaster-including

series by G̃s = G̃r
s(1 − b̃s)

d̃s and R̃i
s = R̃

ir
s (1 − c̃

i
s)
d̃s ; the simulated T-bill return is

R̃f
s = R̃

fr
s (1 − c̃fs)d̃

f
s .

[insert Figure 3 here]

Figure 3 illustrates a simulated multi-period disaster event, depicting the components

of simulated consumption growth: regular consumption growth and the contrac-

tion factor. Using R̃ei
s = R̃i

s − R̃
f
s , it becomes possible to evaluate GT2(θ1, θ̂2) and

ḠT2(κ,θ1, θ̂2) in (3.8) and (3.20), and thus to perform the second-step estimation.29

We have seen that the asymptotic inference for the second-step estimates θ̂1 is

not readily usable. However, the data simulation procedure just described suggests a

strategy to extend it for the purpose of approximating the finite sample distribution

of the estimates. The implementation of this idea entails repeatedly generating

artificial first- and second-step samples, and performing the parameter estimation

on these data. To obtain these pseudo-samples, we combine the aforementioned

bootstrap from the second-step data with a Monte Carlo simulation of the defining

MPP endowed with the first-step parameter estimates. After re-estimating the

MPP parameters on the simulated sample, the second-step procedure is applied as

outlined supra, but on the artificial block-bootstrapped second-step sample, and with

28 We use the automatic block-length selection proposed by Politis et al. (2009), in combination
with Politis and Romano’s (1994) stationary bootstrap. We are grateful to Andrew Patton for
providing the Matlab code that we use for this purpose.

29 For details on the Matlab programs developed for that purpose, see Section A.3.
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a data simulation that uses the re-estimated MPP parameters. The calibrated MPP

parameter values remain unchanged. Repeating this procedure on independently

drawn pseudo-samples yields empirical distributions of the parameter estimates as

well as other statistics of interest, like the model-implied equity premium. Confidence

intervals for parameters and model-implied indicators can be computed based on

the empirical quantiles. Appendix A.2 provides a step-by-step description of this

approach to account for estimation uncertainty. We note that the described procedure

also allows for simulation-based inference on the first-step estimates, for which usable

asymptotic results are available. A comparison thus serves as a robustness check.

5 Empirical results

5.1 First-step estimation results

Table 4 reports the parameter estimates, standard errors and the Akaike (AIC) and

Schwarz-Bayes (SBC) information criteria for the different specifications that emerge

as special cases of Eq. (4.1).

[insert Table 4 about here]

As Table 4 shows, the SBC prefers the parsimonious CH0, for which the baseline

hazard parameter estimates µ̂ and µ̂∗ are different from 0 at conventional levels of

significance. The AIC instead favors the CH4, for which the estimates of µ∗ and δ

are significant at the 5% level. The baseline hazard parameter estimate µ̂ decreases

in size and is no longer significantly different from 0 at conventional levels. The

likelihood-ratio statistics indicate that the constraints implied by the SBC-preferred

CH0 are rejected at the 1% level only in the case of the AIC-preferred CH4. The

subsequent analysis therefore focuses on the CH0 and CH4 specifications.
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The estimates of the CH0 parameters (µ̂∗ = 178.3 and µ̂ = 1.2) imply a probability

to enter a disaster of 0.56%, whereas the probability of remaining in a disaster

is 83%. Because these estimates are important input for the second estimation

step, we check their economic plausibility upfront. For that purpose, we use the

CH0 and CH4 estimates to simulate disaster-including consumption time series with

length T2 = 271. The simulation is repeated 10k times, and we count the number of

replications for which no disastrous contraction occurs. The CH0 simulation yields

21.9%, and the CH4 simulation 14.1% disaster-free histories. The estimated MPPs

thus imply that the U.S. postwar period represents a lucky but not unlikely path,

and the model-implied disaster probabilities are not implausibly large.

Table 4 also shows that the estimates of the Pareto coefficients θ−P and θ+P are

similar, indicating that the distribution of contractions that occur before reaching

the disaster threshold q is not much different from that of the contractions that occur

past q. Moreover, the standard errors of θ̂−P and θ̂+P are small. Figure 4 compares

the Pareto distribution functions (c.d.f.s) evaluated at these estimates, along with

the empirical counterparts. Figure 4a uses θ̂+P and illustrates the goodness-of-fit for

contractions that contribute to reaching the disaster threshold; Figure 4b uses θ̂−P

and refers to contractions beyond the disaster threshold. In both cases, the fit is

quite good.

[insert Figure 4 about here]

We also observe in Table 4 that the asymptotic and simulation-based standard errors

are similar. This correspondence indicates the correct implementation and sensibility

of the simulation-based procedure to account for parameter estimation uncertainty.

35

Electronic copy available at: https://ssrn.com/abstract=3377345



5.2 Second-step estimation results

The three panels in Table 5 show the second-step estimation results broken down by

the calibration of the copula correlations ρi. Within each panel, we report results

by the set of test assets (column-wise) and MPP specification (row-wise). For each

specification variant, we provide the point estimates, along with 95% confidence

bounds and simulation-based standard errors. The IES identification strategy implies

that the estimate of ψ is the same across test assets. Accordingly, there is only one

IES result per row.

[insert Table 5 about here]

Let us first compare the results obtained by a variation of the calibrated copula

correlations. Recall that the claim of consistency of the second-step estimates is based

on the assumption that the calibrated values correspond to the true MPP parameters,

θ̄23 = θ0
23. This theoretical result is not very useful for empirical purposes though.

From an applied perspective, a more interesting question is how the calibration of

the unidentified MPP parameters affects the preference parameter estimates. In

Dridi et al.’s (2007) sequential partial indirect inference (SPII) framework, this

issue is addressed by the so-called partial encompassing condition (PEC). Relating

this notion to the present context, an equivalent of the PEC would imply that the

preference parameters can be consistently estimated, irrespective of the calibration

of the unidentified MPP parameters. However, our econometric strategy is not a

special case of SPII, such that Dridi et al.’s (2007) test of the PEC is not directly

applicable.30 Still, our variation of the calibrated values may be used and interpreted

as an informal check: If an analogy of the PEC applies, then the estimates of the

30 In particular, there is no auxiliary model and no structural misspecified model being simulated.
Nor is there any binding function, for which the partial encompassing condition is formally
defined.
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preference parameters should not be affected in an economically meaningful way by

the alternative calibration of the copula correlations. And indeed, contrasting the

panels of Table 5, we observe that the different calibrations yield similar results. The

point estimates and confidence intervals do not, to a large extent, depend on the

calibrated copula correlations ρi.

Row-wise comparisons reveal that whether the AIC-preferred CH4 or the SBC-

preferred CH0 process is used for data simulation does not affect the results quali-

tatively. Column-wise comparisons show that the results remain comparable when

we use different sets of test assets. Recall that each set of test assets includes the

T-bill return. Because the respective moment match should be particularly useful to

identify the time discount factor, it is not surprising that the variation of β̂ across

test asset sets is small. The size of the RRA estimates is more affected by the choice

of test assets, but the differences are not substantial.

The key insight from Table 5 is that all specification variants yield economically

plausible estimates of the preference parameters. The time discount factor estimates

are smaller than but close to 1, as would be expected for an investor with a positive

rate of time preference and a quarterly decision frequency. The RRA estimates fall

well within the aforementioned strict plausibility interval; with a value of about

1.5, they also are similar to the implicit RRA estimate obtained when conceiving of

the Fama-French three-factor model as an instance of an intertemporal CAPM (see

Grammig and Jank (2016)). The confidence bounds for the RRA coefficient also lie

within the strict plausibility range. Meeting implicit desiderata of preference-based

asset pricing, the IES estimates are significantly larger than unity and similar to the

values chosen in calibration studies. Moreover, the inverse of the estimated IES is

smaller than the RRA estimate, which indicates a preference for early resolution of

uncertainty. We discuss the economic implications of this result subsequently.
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Econometric C-CAPM studies have notoriously yielded implausible and imprecise

preference parameter estimates, calling into question fundamental principles of

financial economics. Not surprisingly, there thus have been prominent attempts

to vindicate the consumption/preference-based asset pricing approach.31 Although

these efforts can claim some success, the estimation results in Table 5 lend more

obvious support to the C-CAPM paradigm.

We also conduct a series of robustness checks, the detailed results of which

appear in the Online Appendix. For example, we compute bias-corrected parameter

estimates and confidence bounds, and we find that the resulting adjustments are

benign. Moreover, we explore the effect of choosing a different disaster threshold. In

accordance with Barro and Jin (2011), we consider q = 0.095 and q = 0.195, two values

that feature prominently in prior literature. The choice of the disaster threshold

does not change the results substantially.

5.3 Asset pricing implications

Dridi et al. (2007, p. 401) advise econometricians to “think as calibrators that

the specification tests should only be focused on the reproduction of stylized facts

[. . . ] under the constraint that some structural parameters of interest have been

consistently estimated.” We adopt this recommendation, and in Table 6, we combine

several model-implied financial indicators, computed using the first- and second-step

estimates, with their real-world equivalents. We focus on the specification variant in

which the data simulation is based on the CH0 process and empirical correlations

are used to calibrate ρi (referred to as the base variant).

31 Julliard and Parker (2005), for example, aggregate consumption over multiple periods and report
γ̂=9.1 with moderate estimation precision (s.e.=17.2). By measuring consumption with waste,
Savov (2011) obtains γ̂=17.0 (s.e.=9.0). In both studies, time-additive power utility is assumed
(such that γ = ψ−1), and β is calibrated.
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[insert Table 6 about here]

When assessing whether a calibrated or estimated C-CAPM yields meaningful

asset pricing implications, the magnitudes of the preference parameters all have

important roles. The relative size of RRA and IES is reflected in the coefficient

θ, which appears in the EZ-SDF in Eq. (2.2). If γ = ψ−1, such that θ = 1, an

investor is indifferent to the temporal resolution of risk; the case of expected utility

obtains. Early resolution is preferred if γ > ψ−1. Preference-based asset pricing

models characteristically require an IES greater than unity and an early resolution

preference to account for key features of asset prices (e.g., Bansal and Yaron (2004);

Huang and Shaliastovich (2015)).32 Accordingly, when the RRA is greater than unity,

θ should be less than 0.

Table 6 shows that the estimated θ is always negative, regardless of the set of

test assets. The confidence bounds indicate that the hypothesis that θ < 0 cannot

be rejected at conventional levels of significance. Therefore, the estimated disaster-

including C-CAPM should reveal meaningful asset pricing implications. To test this

conjecture, we use the preference parameter estimates and assess the plausibility

of the model-implied expected market portfolio and T-bill return, equity premium,

and market Sharpe ratio. We approximate population moments by averaging over T

simulated observations to estimate model-implied expected returns. For that purpose,

we employ the data simulation procedure we used for the second-step estimation,

such that the model-implied expected value of an asset return R can be approximated

32 Long-run consumption and rare disaster risks alike are not resolved until far in the future, and a
high IES penalizes these risks more heavily than current risks. An IES < 1 would result in an
implausibly high and volatile risk-free rate in Bansal and Yaron’s (2004) LRR model, as well as
entail a positive correlation between economic uncertainty and price-dividend ratios in Barro’s
(2009) rare disaster model. Calibrators therefore select conforming IES values to illustrate the
explanatory power of preference-based asset pricing models. For example, Bansal and Yaron
(2004) choose ψ=1.5, and Barro (2009) calibrates ψ=2. The IES estimates using disaster-free
data are typically much smaller (see Havránek (2015); Thimme (2017)).
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by

Ê(R) =
1 − [ET [m̃R̃] −ET [m̃]ET [R̃]]

ET [m̃]
, (5.1)

where we use Hansen’s (1982) notation, ET (x) = 1
T ∑

T
s=1 xs. The returns of primary

interest are the T-bill return Rf and the market return Ra. The model-implied equity

premium can then be estimated by Ê(Ra) − Ê(Rf) and the model-implied market

Sharpe ratio by

Ê(Ra) − Ê(Rf)
√

ET [(R̃a − R̃f)2] −ET (R̃a − R̃f)2
.

As can be seen in Table 6, the magnitudes of these model-implied indicators are

economically sensible and comparable to their sample counterparts. The observed

mean T-bill, mean market return, and equity premium fall within the 95% confidence

bounds for the model-implied equivalents. As we detail in the Online Appendix,

the results in Table 6 are robust to alternative calibrations of the copula correlation

coefficients, copula functions, and the MPP used for the simulation.

Are these RDH-supportive findings an inevitable consequence of the estimation

procedure? When using mkt, the number of moment matches equals the number of

estimated second-step parameters, which seemingly could drive the results. However,

even though in this case GT2(θ̂1, θ̂2) = 0, the estimation procedure does not imply

that the empirical mean market return and mean T-bill return must match with

their model-implied counterparts. Moreover, using the size dec or industry portfolios,

the market portfolio is not among the set of test assets, and the plausible size of the

implied financial indicators offers an out-of-sample reality check.

[insert Figure 5 about here]

Figure 5 provides a visual assessment of how well the disaster C-CAPM accounts

for the cross-sectional variation of returns, by plotting the observed mean returns
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against the model-implied mean returns computed using Eq. (5.3). The mean absolute

errors (MAE) reported in Table 6 summarize the cross-sectional fit for each set of

test assets. Compared with previous results reported for preference-based asset

pricing models, the explanatory power concerning the cross-section of stocks can be

considered quite good. We also observe the well-known result that explaining the

cross-sectional variation of industry portfolio returns is more difficult than that of

size-sorted portfolios.

5.4 Model-implied timing premium

Epstein et al. (2014) note that though some prominent C-CAPMs, calibrated with

sensible preference parameters, may account for empirical asset pricing puzzles, an

ensuing logical inconsistency often gets overlooked. They thus call for a reality check,

by assessing the magnitude of the model-implied timing premium.33 The timing

premium they define is the fraction of lifetime consumption that an agent would be

willing to relinquish if all future consumption risk were resolved (albeit not removed)

in the next period. The conditions to achieve meaningful asset pricing implications

(γ > ψ−1 and ψ > 1) can be met with economically sensible preference parameter

values, yet the model-implied timing premium may be implausibly high.

Epstein et al. (2014) show how the timing premium can be computed when the

model’s endowment/consumption process and the values of the time discount factor,

RRA, and IES are known, and they provide a comparison of the timing premia

implied by some prominent preference-based asset pricing models.

[insert Table 7 about here]

Table 7 displays some of their results. For example, in Barro’s (2009) single-period

disaster model with γ = 4 and ψ = 2 (a calibration with meaningful asset pricing

33 We are grateful to Marcel Rindisbacher, who suggested this model specification test.
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implications), the representative agent would be willing to renounce 18% of her

lifetime consumption to suspend uncertainty about future consumption. For models

that feature a higher persistence of the endowment process, the timing premia

become even higher: 23% for Bansal and Yaron’s (2004) LRR model, and 42% for

the persistent rare disaster model of Wachter (2013). These calculations are based

on the calibrated parameter values reported by the authors. Arguably, these premia

are implausibly high. Epstein et al. (2014) emphasize that the timing premium

is concerned with resolving consumption risk, not income risk. If income risks

were removed, the resulting planning advantage could justify a premium. But if

the entire consumption path became known, planning would be obsolete. They

argue that there is a purely visceral value associated with the information; there is

no rational justification for a notable timing premium. Epstein et al. (2014) note

that this argument is based on introspection. Meissner and Pfeiffer (2018) provide

experimental evidence that the timing premium is indeed small.

We accordingly extend Epstein et al.’s (2014) analysis and compute the timing

premium implied by the multi-period disaster consumption process, using the esti-

mates reported in Table 5 (base variant).34 In this case, the timing premium attains

a considerably smaller value of only 0.9%. Although the nonindifference to temporal

resolution of risk matters – especially to obtain meaningful asset pricing implications

– it does not imply an implausible timing premium. For a further comparison, we

calculate the timing premium implied by Nakamura et al.’s (2013) Bayesian RDH

analysis and report the result in Table 7. The details of this analysis are provided

in the Online Appendix. Their paper relates closely to ours, though the empirical

methodologies are very different. With a size of 11.3%, Nakamura et al.’s (2013)

implied timing premium is notably smaller than the others reported in Table 7, but

34 We gratefully acknowledge the provision of the Matlab program by Epstein et al. (2014), which
we use for this purpose.
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arguably, it is still implausibly high.

5.5 Contrasting results

As mentioned in the introduction, two prior studies, by Julliard and Ghosh (2012)

(henceforth J&G) and Nakamura et al. (2013) (henceforth NSBU), also conduct

econometric analyses of the rare disaster hypothesis, but they vastly differ in their

conclusions. Therefore, we contrast their methodologies and findings against our own

to derive potential explanations for the disparate results.

The two previous studies share with ours the use of Barro and Ursúa’s (2008)

data and their effort to allow for multi-period disaster events. They also follow

Blanchard’s (2008) advice to base the empirical analysis of the RDH on the basic

asset pricing equation. Whereas we and NSBU rely on the EZW-pricing kernel, J&G

use the power utility stochastic discount factor. With power utility, ψ = 1/γ, so they

do not have to worry about estimating the IES.35

Furthermore, J&G and NSBU share our view that the nature of rare disasters calls

for non-standard econometric methods that combine elements of calibration practices.

As in the present study, NSBU implement a two-step approach. The first step is the

Bayesian modeling of a disaster-including consumption process. In the second step,

they numerically solve the basic asset pricing equation, using as input the first-step

endowment process that is parameterized with draws from the posterior parameter

distribution. The values of β and γ are chosen such that the series generated in the

process match the equity premium and mean T-bill return. However, NSBU do not

extend this calibration procedure to the IES. They circumvent the aforementioned

35 To justify working with power utility, J&G stress that the choice of the utility function did not
lead to qualitatively different equity premia in previous studies, and they cite Barro (2006) (who
uses power utility) and Wachter (2013) (who uses EZW-preferences). However, these studies
assume that consumption disasters occur as single-period events.
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identification issues by setting ψ = 2, the same value chosen by Bansal et al. (2007).

Adopting an alternative methodological approach, J&G rely on (Bayesian) em-

pirical likelihood methods. They argue that as long as the consumption data include

disaster events – though less frequently than expected – the empirical likelihood

can overweight the probability of these events, such that it is possible to match the

equity premium with a plausible RRA value.36 Rather than trying to model the

disaster process, J&G create artificial samples from non-disastrous U.S. data and

the observed consumption disasters assembled by Barro and Ursúa (2017).

J&G’s assessment of the explanatory power of the RDH is different from ours and

that of NSBU. When they relax the assumption that disasters occur as single-period

events, the RRA estimate becomes implausibly large. To obtain a reasonable level of

risk aversion, disasters would have to occur much too frequently (about once in every

10 years). As a consequence, the equity premium puzzle itself would be a rare event;

the implied probability of a disaster-free period of 72 years is roughly 0.1% (assuming

γ = 10). By contrast, NSBU are able to match the observed equity premium with a

reasonable RRA of 6.4, and the posterior distribution of the model-implied equity

premium is plausible too. According to NSBU, the implied probability of observing

a period of 72 disaster-free years is 12%, which broadly corresponds to the results we

report in Section 5.1.

What is the reason behind these diverging results? The data used in the studies

are similar, and the basic economic paradigm is the same. The econometric methods

are unorthodox but well thought out; in various ways, they take account of the

sample selection problem implied by the RDH. Yet one aspect is different, namely,

the pricing kernel implied by the investor preferences. Assuming EZW preferences,

36 In an exactly identified setting, such as when estimating γ using a single moment match, the
procedure is equivalent to GMM. However, the approach also allows to fix the RRA coefficient
to an arbitrary value (J&G consider γ = 10), estimate the respective observation weights, and
conduct a test of the identifying restrictions.
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we and NSBU have to deal with the identification of the IES, whereas J&G achieve

it implicitly by assuming power utility. NSBU set the IES to a value that is, like our

ψ estimate, well above unity. Allowing for multi-period disasters, J&G’s implied IES

estimate is way below 1. We think that the differential treatment of the IES is the

key to explaining the apparently disparate conclusions.

In a nutshell, allowing for rare disastrous contractions means acknowledging

that the economy is more risky than reflected by, for example, postwar U.S. data.

Accordingly, when matching asset return moments like the equity premium, as we,

J&G, and NSBU all do in some way or another, the calibrated/estimated RRA

coefficient is smaller than it would be in an analysis based on regular, disaster-free

data. However, by assuming that the disastrous contraction unfolds in a single period,

the severity of the event becomes exaggerated. Allowing for multi-period disasters,

the total contraction can pan out over subsequent quarters, and maybe even several

years.

With a power utility SDF, this mitigation of the disaster event implies that to

match the equity premium, the RRA estimate will be higher than in the single-period

case. But the increase of RRA inevitably entails a reduction of the IES. Conversely,

setting the RRA to a plausible level evokes implausibly high disaster probabilities.

Such reasoning is corroborated by an analysis in which we use our proposed approach

with a power utility SDF instead of the EZW pricing kernel, which yields a γ estimate

that increases to the mid-twenties to mid-forties, a range that is in line with the

results reported by J&G. Details of this analysis can be found in the Online Appendix.

The story unfolds differently with EZW preferences and multi-period disasters,

because this setting allows for another aspect of the equity premium. The possibility

that disastrous contractions can pan out over years means that an investor faces

late resolution of considerable uncertainty, which is a non-issue when the contraction
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unfolds instantaneously. Power utility implies indifference to the timing of the

resolution of uncertainty, but late resolution is disliked by an investor with EZW

preferences and IES and RRA that are both above unity. Such an investor will demand

a premium to be compensated for exposure to the late resolution of uncertainty

(when investing in pro-cyclical payoffs). This aspect of the equity premium is not

accounted for by risk aversion, and Schlag et al. (2020) provide empirical evidence of

a notable late resolution premium.37 In the multi-period disaster framework of our

study, the RRA estimate remains plausible, and the IES estimate is greater than

1, which is consistent with late resolution premia and entails plausible asset pricing

implications. This interpretation also applies to NSBU’s study, but here the late

resolution premium is preset, by choosing a convenient IES value, thereby aiding the

favorable assessment of the RDH.38

6 Discussion: connections to related approaches

In this section, we delineate some commonalities of extant simulation-based methods

with the approach proposed herein, and we highlight its distinctive features.

Although our formal arguments draw on the foundations of SMM theory laid

out by Duffie and Singleton (1993), our approach is not a special case of SMM.

There are two marked differences. First, we match simulated moments with sample

moments (more precisely, functions of moments), but unlike with SMM, we also

express the latter as functions of the structural parameters to be estimated. By

contrast, standard SMM assumes that the moments computed using real data are

37 We note that the late resolution premium is a different notion than the timing premium, a
situation in which consumption uncertainty is completely resolved. An early resolution of
uncertainty means that economic planning remains possible.

38 Although NSBU also identify the IES as the crucial factor to reconcile the RDH with multi-period
disasters, their explanation is different from ours: It exploits that their consumption process
implies the predictability of consumption growth at the onset of a disaster.

46

Electronic copy available at: https://ssrn.com/abstract=3377345



produced through a “simulation by nature,” and thus they only implicitly depend

on these parameters. The difference arises as a result of the identification of the

preference parameters θ1 through the reformulated basic asset pricing equation (2.13).

The pricing kernel mt(θ1) appears on both sides of this equation; its left-hand side

is approximated using sample moments, whereas simulated moments are used for

the right-hand side. Second, our study of the RDH exploits very heterogeneous data

sources, which motivates the initial estimation step and the need to calibrate some

unidentified parameters. These aspects are not taken into account by conventional

SMM.

Similar conclusions apply when comparing our approach to indirect inference

(II) and simulated minimum distance (SMD) methods, which may be considered as

generalizations of SMM. There are variants of these methodologies with similarities

to the present study. For example, Grammig and Küchlin (2018) propose a two-step

II approach to estimate the parameters of economic growth processes in a first stage,

then use the results to estimate the parameters of the EZW pricing kernel in a second

stage. Their simulation of data based on preliminary parameter estimates (and not

only calibrated values) is analogous to our approach, but it is also quite uncommon.

In the context of the simulation-based estimation of measurement error models, a

similar strategy has been proposed by Gospodinov et al. (2017).

Insofar as the estimation strategy focuses on capturing those features of the data

deemed essential, the approach pursued herein is reminiscent of the sequential partial

II framework proposed by Dridi et al. (2007). They argue that it is not expedient that

the auxiliary model captures every aspect of the structural model to be simulated,

because it will be at least partially misspecified. Instead, they suggest relying on

economically relevant binding functions. Our use of the basic asset pricing equation

to identify the preference parameters follows the same reasoning. As outlined supra,
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Dridi et al. (2007) distinguish parameters with economic meaning and nuisance

parameters that enable the data simulation from the structural model. Some of the

parameters of the second type can be estimated, others must be calibrated. These are

obvious similarities with our approach. However, there are also important differences.

Dridi et al. (2007) refer to the parameters of the second type as nuisance parameters,

because they govern a simulated process that may be a “caricature of reality.” In

contrast, the parameters of the defining MPP, which are needed for the simulation

in the second step, account for economically important aspects. The defining MPP

is a statistical model, and thus a description of the true disaster process, but this

description has to be meaningful, in the sense that the disaster probabilities and

conditional distribution of disaster marks are assumed to be correctly specified.

7 Conclusion

Calibration studies prevail when assessing the empirical explanatory power of

preference-based asset pricing models that allow for rare disaster risk. The na-

ture of the theoretical frameworks used – fully parameterized structural models that

are not meant to be true descriptions of economic reality – renders conventional

estimation and specification testing questionable. The use of such stylized models

may appear inevitable, because a strategy to “let the data speak” would be subject to

a sample selection problem. The data typically used in empirical asset pricing contain

few, if any, disastrous consumption contractions. But shunning classic econometric

analysis has its drawbacks. Hansen and Heckman (1996) criticize certain calibration

practices for lacking methodological discipline and seeking confirmatory evidence

instead of trying to disprove hypotheses.

A key simplifying assumption adopted in many theoretical models is that a
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disaster event is instantaneous. This simplification ignores empirical evidence that

shows that disastrous consumption contractions can build up over multiple time

periods. The single-period disaster assumption also is not necessarily innocuous.

Some scholars suspect that it is the very reason for the support that calibration

studies have lent to the RDH.

These observations motivate the present study, in which we propose a novel

strategy to estimate and empirically assess asset pricing models that allow for multi-

period disaster risk. We have been influenced by ideas put forth by Dridi et al. (2007),

who waive the elusive ideal of an efficient estimation of fully parameterized structural

models. They instead advocate exploiting a model’s key economic implications for

parameter estimation and tests of empirical validity. Blanchard (2008) similarly

argues for basing the empirical analysis of disaster-including C-CAPMs on model-

implied asset pricing equations (i.e., first-order intertemporal conditions).

To transfer these ideas to an empirical methodology, we start from the basic asset

pricing restrictions, assuming a representative agent with recursive preferences and

an endowment process that may be prone to disastrous consumption contractions.

The asset pricing equations are reformulated to allow for the possibility of such multi-

period disaster events, modeled as a marked point process. This setting provides the

basis for an econometric strategy that takes account of the inherent sample selection

problem that hampers the empirical assessment of the rare disaster hypothesis.

This strategy involves the simulation of disaster-including consumption growth and

return series, which are generated by a marked point process, whose parameters are

estimated in a first step or, due to data limitations, calibrated. The second step

consists of a simulation-based estimation of the investor preference parameters.

Econometric analyses of preference-based asset pricing models have yielded

notoriously negative results, including implausible estimates of structural parameters
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and doubtful asset pricing implications. But the economic paradigm should not be

discarded light-heartedly. It represents a rational link between the real economy and

financial markets. Applying the proposed methodology, we find that the estimate

of the subjective discount factor implies a sensible, positive rate of time preference;

the RRA estimates and the associated 95% confidence bounds fall within a strict

plausibility range, and the IES parameter estimates are significantly greater than

unity. The relative magnitudes of the estimated IES and RRA coefficients indicate a

preference for an early resolution of risk, which, in conjunction with an IES > 1, is a

crucial condition for obtaining meaningful asset pricing implications.

As suggested by Hansen and Heckman (1996, p. 93), we interpret tests of the

validity of a model“as a barometer for measuring whether a given parametric structure

captures the essential features of the data.” We find that the model-implied mean

market return, T-bill return, and market Sharpe ratio have economically meaningful

sizes. The estimated multi-period disaster C-CAPM thus reconciles plausible investor

preferences with the high U.S. postwar equity premium and the low mean T-bill

return. It does so without the implication of a questionably high timing premium.

With an econometric analysis, we thus corroborate the capacity of the rare disaster

hypothesis to provide a sensible explanation of the equity premium puzzle, even when

disasters can occur as multi-period events. We identify the differential treatment of

the possibility of a premium for the late resolution of risk as an explanation for the

disparate conclusions of previous studies regarding the explanatory power of the rare

disaster hypothesis.

Avenues for further research stretch in various directions. As mandated by

limitations of the currently available data, we have focused on rather parsimonious

MPP variants. With improved data quality, and a smart treatment of missing

disaster return data, e.g., by adopting ideas from Chaudhuri et al. (2018), more
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elaborate MPP specifications could be considered for the first estimation step. For

example, using a discrete-time version of the multivariate intensity process proposed

by Bowsher (2007), one could attempt to model the interdependence of regional

disaster intensities. Finally, recognizing the prominent role of the IES and the

aforementioned caveats related to its estimation, one could draw on Garcia et al.’s

(2006) idea to identify the IES by allowing for a habit level of consumption. We leave

these topics for further research.
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A Appendix

A.1 Using excess returns and hybrid variants

The second-step estimation approach can easily be modified to use a combination of

returns and excess returns in the objective function in Eq. (3.10). Section 2 shows

that the counterpart of Eq. (2.8), as it applies to an excess return Rei
t , reads:

E [mt(θ1)R
ei
t ∣dt = 0] = −

pE [mt(θ1)Rei
t ∣dt = 1]

1 − p
. (A-1)

Proceeding as for a gross return, Eq. (A-1) can be written in terms of unconditional

moments that represent expected prices of special payoffs, one of which is 0 in disaster

periods,

E [mt(θ1)R
ei
t ∣dt = 0] =

E [mt(θ1)uit, ]

1 −E[dt]
, (A-2)

where uit=R
ei
t (1 − dt), while the other, vit = R

ei
t dt, is 0 in non-disaster periods,

−
pE [mt(θ1)Rei

t ∣dt = 1]

1 − p
= −

E [mt(θ1)vit]

1 −E[dt]
. (A-3)

Leveraging the idea of Section 2, the sample equivalent of Eq. (A-2) is computed

using actual data:

Hei
T2
(θ1) ≡

1
T2
∑
T2
t=1mt(θ1)uit

1 − 1
T2
∑
T2
t=1 dt

, (A-4)

while simulated moments are used to approximate Eq. (A-3):

H̃ei
T2
(θ1, θ̂2) ≡

− 1
T (T2)

T (T2)
∑
s=1

m̃s(θ1, θ̂2)ṽis(θ̂2)

1 − 1
T (T2)

T (T2)
∑
s=1

d̃s(θ̂2)

. (A-5)

The equivalent of the moment matches in Eq. (3.9) using excess returns reads:

Gei
T2
(θ1, θ̂2) =H

ei
T2
(θ1) − H̃

ei
T2
(θ1, θ̂2). (A-6)
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Testing an asset pricing model by exploiting its implications for both returns and

excess returns is a common empirical practice. In that vein, it is possible to use one

moment match of the type in Eq. (3.9) for a base return R1
t and moment matches of

the type in Eq. (A-6) that involve N excess returns, such that Eq. (3.8) becomes:

GT2(θ1, θ̂2) = [G1
T2
(θ1, θ̂2),G

e1
T2
(θ1, θ̂2) . . . ,G

eN
T2

(θ1, θ̂2)]
′, (A-7)

which is then used in Eq. (3.10) to estimate the preference parameters.

A.2 Accounting for parameter estimation uncertainty

We use a simulation-based approach to provide confidence intervals for model param-

eters and model-implied indicators. It consists of the following steps:

1. For each of B = 1,000 replications, the defining MPP is simulated using the

first-step estimates θ̂21 and θ̂22. Each of the generated pseudo-samples contains

T1 observations, consisting of the sequence of simulated disaster indicators d̃s

and d̃+s , as well as simulated consumption contraction factors b̃s, which are

drawn, in the case of a simulated disaster event, from the Pareto distributions

endowed with parameters θ̂−P, and θ̂+P, respectively. The MPP parameters are

re-estimated on each pseudo-sample.

2. For each of the B = 1,000 replications, an artificial sample of T2 observations

is drawn that consists of series of consumption growth and returns of interest.

These pseudo-samples are obtained by a block-bootstrap simulation from the

second-step data, as described in Section 4.1. For each pseudo-sample, the

estimation of the preference parameters is performed as described in Section

4.2, with the data simulation based on the MPP estimates that correspond to

the same replication. For each of the 1,000 pseudo-samples, statistics of interest
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like the model-implied equity premium, market Sharpe ratio, and MAEs are

computed.

3. Taking the 0.025 and 0.975 quantiles of the empirical distributions of the

B = 1,000 estimates and statistics of interest, 95% confidence intervals for the

model parameters and model-implied indicators are computed. The empirical

standard deviations provide simulation-based standard errors for the parameter

estimates.

A.3 Online Appendix

The first part of the Online Appendix contains additional results. It is accessible at

https://tinyurl.com/web-appendix-GS-rare-disasters.

It contains the following sections:

[O.1] Regular and contraction components: Links to Barro (2006) and Barro and

Jin (2011)

[O.2] Concerning consistency

[O.3] Characterizing the limit distribution

[O.4] Alternative copula functions

[O.5] Alternative identification of ψ

[O.6] Juxtaposition with Nakamura et al. (2013) and Julliard and Ghosh (2012)

[O.7] Timing premium calculated for Nakamura et al. (2013)

[O.8] Results assuming power utility

[O.9] Alternative disaster thresholds and further robustness checks

The second part of the Online Appendix contains programs and data that can be

used to replicate the reported results. It is accessible at:

https://tinyurl.com/code-data-GS-rare-disasters.
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Table 1: Implementation of the econometric strategy: synopsis
This table provides an overview of the implementation of the proposed econometric strategy.

Step Action Motivation Parameters involved Section Robustness & plau-
sibility checks

0 (prepare
data)

prepare multi-country panel
data for estimation: generate se-
quence of multi-period disasters

allows estimation of MPP
model by ML

fixed:
disaster threshold q

4.1 variation of disaster
threshold

1a (estimate
MPP param-
eters)

estimate MPP parameters using
the identified disasters from step
0

allows simulation of {ds} and
{d+s}; allows drawing from
marginal (Pareto) distribution
of consumption contractions

estimated:
hazard rate parameters: θ21 =
(µ,α, δ, µ∗, α∗, δ∗)′ and Pareto
parameters: θ22 = (θ+P , θ−P )′

4.2 variation of the MPP
specification

1b (calibrate
MPP param-
eters)

assume that the marginal distri-
bution of return contractions is
identical to the marginal distri-
bution of consumption contrac-
tions, specify copula function,
and calibrate copula parameters

complements estimation re-
sults from step 1a and allows
simulation of MPP (including
drawing return and consump-
tion contractions from their
joint distribution)

calibrated:
copula parameter(s) and gov-
ernment default probability:
θ23 = (ρ1, . . . , ρM , pf)′
also: choices regarding copula
function and marginal distribu-
tion of return contractions

4.2 variation of copula pa-
rameters and copula
functions

2 (estimate
preference
parameters)

simulation-based estimation of
preference parameters using
steps 0-1b

allows assessment of the plau-
sibility of preference parame-
ters

estimated:
preference parameters:
θ1 = (β, γ,ψ)′ and intercept in
IES identification, κ

4.3 variation of test assets
and IES identification

3 (assess es-
timation un-
certainty)

assess estimation uncertainty
via repeated sampling procedure

provide standard errors and
confidence intervals for prefer-
ence parameters

4.3, A.2 compare with asymp-
totic first-step standard
errors

4 (assess eco-
nomic sensi-
bility)

compute model-implied key fi-
nancial indicators, MAEs, and
timing premium using the re-
sults from steps 2-3

assess plausibility of model-
implied indicators and timing
premium

5.3-5.5 contrast results with
previous studies
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Table 2: Multi-country consumption data
This table lists the selected 35 countries and the time periods with available consumption data.
These data have been assembled by Barro and Ursúa (2008).

country time periods

Argentina 1875 − 2009
Australia 1901 − 2009
Austria 1913 − 1918, 1924 − 1944, 1947 − 2009
Belgium 1913 − 2009
Brazil 1901 − 2009
Canada 1871 − 2009
Chile 1900 − 2009
Colombia 1925 − 2009
Denmark 1844 − 2009
Finland 1860 − 2009
France 1824 − 2009
Germany 1851 − 2009
Greece 1938 − 2009
India 1919 − 2009
Indonesia 1960 − 2009
Italy 1861 − 2009
Japan 1874 − 2009
Malaysia 1900 − 1939, 1947 − 2009
Mexico 1900 − 2009
Netherlands 1807 − 1809, 1814 − 2009
New Zealand 1939, 1944, 1947 − 2009
Norway 1830 − 2009
Philippines 1946 − 2009
Peru 1896 − 2009
Portugal 1910 − 2009
South Korea 1911 − 2009
Spain 1850 − 2009
Sri Lanka 1960 − 2009
Sweden 1800 − 2009
Switzerland 1851 − 2009
Taiwan 1901 − 2009
UK 1830 − 2009
USA 1834 − 1859, 1869 − 2009
Uruguay 1960 − 2009
Venezuela 1923 − 2009
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Table 3: U.S. consumption growth and asset returns 1947:Q2–2014:Q4
This table contains descriptive statistics of consumption growth (G) and gross returns on the three
sets of test assets. Panel A: CRSP value-weighted market portfolio proxy (Market) and T-bill; Panel
B: ten size-sorted portfolios and T-bill; Panel C: ten industry portfolios and T-bill. In Panel B,
1st, 2nd, and so on refer to the deciles of the ten size-sorted portfolios. The ten industry portfolios
in Panel C are: non-durables (NoDur : food, textiles, tobacco, apparel, leather, toys), durables
(Durbl : cars, TVs, furniture, household appliances), manufacturing (Manuf : machinery, trucks,
planes, chemicals, paper, office furniture), energy (Engry : oil, gas, coal extraction and products),
business equipment (HiTec: computers, software, and electronic equipment), telecommunication
(Telcm: telephone and television transmission), shops (Shops: wholesale, retail, laundries, and
repair shops), health (Hlth: healthcare, medical equipment, and drugs), utilities (Utils), and others
(Other : transportation, entertainment, finance, and hotels). In addition, ac stands for the first-order
autocorrelation, and std is the standard deviation.

Panel A: mkt
mean std ac correlations

G T-bill

Market 1.0211 0.0816 0.084 0.175 0.026

T-bill 1.0017 0.0045 0.857 0.204
G 1.0048 0.0051 0.311

Panel B: size dec
mean std ac correlations

G T-bill 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.0290 0.1251 0.061 0.178 -0.015 0.711 0.818 0.857 0.884 0.895 0.912 0.931 0.949 0.964

2nd 1.0271 0.1177 -0.001 0.172 0.005 0.781 0.871 0.915 0.933 0.947 0.961 0.974 0.982

3rd 1.0287 0.1115 -0.024 0.165 -0.001 0.818 0.907 0.943 0.956 0.968 0.976 0.985

4th 1.0270 0.1072 -0.018 0.165 0.002 0.830 0.914 0.948 0.962 0.976 0.983

5th 1.0274 0.1036 0.013 0.167 0.019 0.855 0.936 0.967 0.972 0.982

6th 1.0262 0.0971 0.019 0.143 0.001 0.868 0.946 0.970 0.977

7th 1.0262 0.0964 0.042 0.157 0.009 0.892 0.965 0.982

8th 1.0249 0.0923 0.022 0.145 0.019 0.906 0.975

9th 1.0237 0.0841 0.068 0.148 0.021 0.935

10th 1.0198 0.0767 0.119 0.178 0.043

Panel C: industry

mean std ac correlations

G T-bill Other Utils Hlth Shops Telcm HiTec Engry Manuf Durbl

NoDur 1.0238 0.0811 0.047 0.090 0.105 0.838 0.674 0.800 0.871 0.656 0.642 0.445 0.829 0.685

Durbl 1.0236 0.1156 0.103 0.190 0.009 0.801 0.484 0.520 0.773 0.581 0.690 0.490 0.832

Manuf 1.0229 0.0899 0.082 0.173 0.014 0.901 0.580 0.745 0.825 0.647 0.807 0.635

Engry 1.0253 0.0888 0.041 0.163 -0.039 0.592 0.534 0.423 0.422 0.432 0.497

HiTec 1.0258 0.1159 0.070 0.167 -0.000 0.758 0.470 0.663 0.733 0.659

Telcm 1.0187 0.0805 0.148 0.099 0.104 0.695 0.627 0.568 0.668

Shops 1.0238 0.0957 0.039 0.158 0.044 0.837 0.557 0.704

Hlth 1.0271 0.0909 0.054 0.092 0.085 0.726 0.542

Utils 1.0195 0.0711 0.080 0.069 0.071 0.655

Other 1.0217 0.0982 0.078 0.159 0.034
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Table 4: First-step estimation results
This table displays the estimates of the MPP parameters, along with asymptotic standard errors (in parentheses) and simulation-based standard
errors (in brackets). Asymptotic standard errors are Hessian-based; the simulation-based standard errors are computed as described in Section
A.2. The number of replications is B=1k. Here, L is the log-likelihood value at the maximum; AIC = 2K − 2 lnL and SBC = K lnT1 − 2 lnL,
where K is the number of parameters in the vector θ21. LR gives the p-values (in percent) of the likelihood ratio tests of the null hypothesis that
the parameter restrictions implied by the CH0 specification are correct. Specification variants are reported in ascending order by SBC.

θ+P θ−P µ µ∗ α α∗ δ δ∗ L AIC SBC LR

37.255 35.687
(1.478) (1.696)
[1.844] [1.261]

CH0 178.3 1.201 -790.3 1584.7 1600.1
(18.8) (0.023)
[18.7] [0.024]

CH4 64.9 1.201 441.1 -787.0 1580.0 1603.2 <1.0
(49.3) (0.023) (211.5)
[55.9] [0.025] [228.6]

CH3 64.9 1.214 441.1 -0.375 -786.8 1581.5 1612.5 2.9
(49.3) (0.032) (211.5) (0.537)

CH2 198.9 1.220 -0.146 -0.002 -789.9 1587.7 1618.7 62.9
(30.8) (0.050) (0.153) (0.004)

CH1 71.7 1.236 -0.032 -0.002 430.5 -0.398 -786.6 1585.3 1631.7 11.7
(59.2) (0.056) (0.145) (0.004) (216.1) (0.541)
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Table 5: Second-step estimation results
This table displays the second-step estimation results. Panels A-C break down the results by the calibration of the copula correlations ρ. Each
panel reports the results by set of test assets (columns) and MPP specification (rows). The bold numbers are point estimates of the preference
parameters. Estimates of κ are not reported, for brevity. The numbers in parentheses are simulation-based standard errors, and the numbers in
brackets are the bounds of the 95% confidence intervals, using B=1k.

Panel A: ρ =Corr(Gr
t,R

r
t)

mkt size dec industry

ψ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂

CH0 1.445 (0.160) 0.99163 (0.00218) 1.469 (0.276) 0.99402 (0.00458) 1.561 (0.261) 0.99450 (0.00519) 1.578 (0.287)
[1.235 1.858] [0.98734 0.99584] [1.080 2.183] [0.98683 1.00455] [1.231 2.327] [0.98918 1.00257] [1.185 2.332]

CH4 1.438 (0.164) 0.99164 (0.00236) 1.465 (0.299) 0.99402 (0.01381) 1.556 (0.281) 0.99450 (0.00497) 1.573 (0.310)
[1.233 1.861] [0.98690 0.99614] [1.040 2.260] [0.98614 1.00547] [1.209 2.349] [0.98858 1.00445] [1.161 2.424]

Panel B: ρ = 0.99

mkt size dec industry

ψ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂

CH0 1.452 (0.160) 0.99161 (0.00219) 1.477 (0.277) 0.99388 (0.00460) 1.565 (0.260) 0.99435 (0.00544) 1.583 (0.286)
[1.237 1.858] [0.98732 0.99584] [1.081 2.191] [0.98668 1.00446] [1.231 2.320] [0.98897 1.00247] [1.183 2.334]

CH4 1.441 (0.164) 0.99163 (0.00237) 1.470 (0.301) 0.99389 (0.02293) 1.557 (0.280) 0.99437 (0.00506) 1.574 (0.309)
[1.232 1.864] [0.98689 0.99615] [1.042 2.271] [0.98596 1.00538] [1.209 2.348] [0.98842 1.00434] [1.159 2.423]

Panel C: ρ = 0

mkt size dec industry

ψ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂

CH0 1.443 (0.160) 0.99163 (0.00218) 1.467 (0.276) 0.99403 (0.00458) 1.559 (0.261) 0.99451 (0.00518) 1.576 (0.287)
[1.234 1.858] [0.98734 0.99585] [1.080 2.183] [0.98684 1.00456] [1.231 2.329] [0.98918 1.00258] [1.185 2.331]

CH4 1.437 (0.165) 0.99164 (0.00236) 1.464 (0.299) 0.99403 (0.01360) 1.555 (0.281) 0.99451 (0.00496) 1.572 (0.310)
[1.234 1.861] [0.98691 0.99614] [1.040 2.260] [0.98616 1.00548] [1.209 2.350] [0.98859 1.00446] [1.161 2.425]
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Table 6: Model-implied indicators
The table displays the model-implied equity premium, mean market return, mean T-bill return,
market Sharpe ratio, MAE, and the estimates-implied value of θ = (1 − γ)/(1 − ψ−1). The computa-
tions use the base specification variant, such that preference parameter estimates rely on the CH0,
and ρ is calibrated to the empirical correlation between regular returns and consumption growth.
The column labeled data displays the empirical values of the indicators (1947:Q2–2014:Q4 U.S.
data). Results are reported by the set of test assets. The numbers in brackets are the lower and
upper bounds of the 95% confidence intervals, using B=1k.

data mkt size dec industry

equity premium 1.94 1.84 2.08 2.12
(% per qtr) [0.96 2.69] [1.35 2.77] [1.26 2.97]

mean market return 2.11 1.95 2.19 2.25
(% per qtr) [1.08 2.71] [1.49 2.82] [1.37 3.05]

mean T-bill return 0.17 0.11 0.11 0.12
(% per qtr) [-0.10 0.30] [-0.10 0.31] [-0.08 0.33]

Sharpe ratio 0.237 0.225 0.254 0.259
(market) [0.111 0.373] [0.156 0.382] [0.144 0.406]

MAE 0.11 0.16 0.33
(% per qtr) [0.10 0.16] [0.15 0.33] [0.24 0.58]

θ̂ = (1 − γ̂)/(1 − ψ̂−1) -1.52 -1.82 -1.88
[-3.48 -0.21] [-3.57 -0.66] [-3.88 -0.52]

Table 7: Implied timing premium
The table displays the implied timing premia computed for the asset pricing models proposed by
Wachter (2013), Barro (2009), and Bansal and Yaron (2004) using the preference parameter values
calibrated in each respective study. The timing premia implied by these models are taken from
Epstein et al. (2014). The model-implied timing premium for the estimated disaster-including
C-CAPM in this study (base variant) is computed using the program supplied by Epstein et al.
(2014) with 10k simulated consumption growth series of 1k observations. The simulation of the
timing premium in the Nakamura et al. (2013) setting also uses 10k simulated consumption growth
series with length 200.

γ ψ β timing decision
premium (%) frequency

Bansal and Yaron (2004) 7.50 1.50 0.998 23 monthly

Barro (2009) 4.00 2.00 0.951 18 annual

Wachter (2013) 3.00 1.00 0.988 42 quarterly

Nakamura et al. (2013) 6.40 2.00 0.967 11.3 annual

This study (base variant) 1.47 1.44 0.992 0.9 quarterly
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Figure 1: Distribution of disaster events
This figure depicts the 89 disaster events identified from Barro and Ursúa’s (2008) (updated)
multi-country panel data using q=0.145. Black lines denote European countries, red lines South
American countries and Mexico, golden lines Western offshores (Australia, Canada, New Zealand,
and U.S.A.), and blue lines represent Asian countries. The dotted horizontal line indicates the
average contraction size.
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Figure 2: Identification of consumption disasters and quarterly contraction factors:
The U.S. example
The dashed (blue) line in Panel 2a depicts annual U.S. consumption growth during 1870-2009 using
Barro and Ursúa’s (2008) data. Assuming a threshold of q=14.5%, and implementing Barro’s (2006)
disaster detection scheme, two disaster events are identified. The first happened during 1918–1921,
when aggregate consumption dropped (peak-to-trough) by 16.4%, and the second during 1930–1933
shows a drop in aggregate consumption of 20.8%. Panel 2b zooms into a period that contains
the two disaster events. The solid (red) line indicates (one minus) the quarterlized contraction
factors obtained by the procedure described in Section 4.1. The vertical dashed lines highlight the
beginning and end of the two disaster events.

(a) Annual U.S. consumption growth and identified quarterly contractions

(b) Zooming in 1915–1935
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Figure 3: Illustration of the simulation of a multi-period consumption disaster
This figure illustrates the simulation of consumption growth before, during, and after a multi-period
disaster event using the described procedure. The disaster threshold is q=14.5%. The MPP
simulation uses the CH0 variant with µ̂=178.3 and µ̂∗=1.2, along with Pareto parameters θ̂−P=35.7

and θ̂+P=37.3 (estimates reported in Table 4). The graph displays the components of simulated

consumption growth G̃s: the simulated regular growth component G̃r
s and the scaling factor 1 − b̃s.

The simulated disaster event reaches the threshold after 9 quarters, lasts 11 quarters, and implies
an overall contraction of 20.6%. The sharpest quarterly contraction is 4.9%.
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Figure 4: Fitted Pareto vs. empirical c.d.f.
This figure illustrates the empirical c.d.f.s (solid lines) and the fitted c.d.f.s (dashed lines) of the
contractions identified from the Barro and Ursúa (2008) data, using a disaster threshold of q=0.145.
Panel (a) captures the distribution of contractions that occur at the beginning of a disaster and
contribute to reaching the disaster threshold. Panel (b) refers to contractions that extend beyond
the disaster threshold. The fitted c.d.f.s use the parameter estimates from Table 4.

(a) c.d.f. fit for contractions that contribute to reaching q

(b) c.d.f. fit for contractions that extend beyond q
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Figure 5: Cross-sectional fit
This figure compares the mean realized returns of the test assets with the model-implied mean returns
computed according to Eq. (5.1). The model-implied computations use the base specification variant,
such that preference parameter estimates rely on the CH0, and ρ is calibrated to the empirical
correlation between regular returns and consumption growth.
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Havránek, T. (2015): “Measuring Intertemporal Substitution: The Importance

of Method Choices and Selective Reporting,” Journal of the European Economic

Association, 13(6), 1180–1204.

Heaton, J. (1995): “An Empirical Investigation of Asset Pricing with Temporally

Dependent Preference Specifications,” Econometrica, 63(3), 681–717.

Huang, D., and I. Shaliastovich (2015): “Risk Adjustment and the Temporal

Resolution of Uncertainty: Evidence from Option Markets,” Working Paper,

Wharton University.

Julliard, C., and A. Ghosh (2012): “Can Rare Events Explain the Equity

Premium Puzzle?,” Review of Financial Studies, 25(10), 3037–3076.

Julliard, C., and J. A. Parker (2005): “Consumption Risk and the Cross-Section

of Expected Returns,” Journal of Political Economy, 113(1), 185–222.

Kim, K., and A. R. Pagan (1999): “The Econometric Analysis of Calibrated

Macroeconomic Models,” in Handbook of Applied Econometrics, ed. by H. Pe-

69

Electronic copy available at: https://ssrn.com/abstract=3377345



saran, and M. Wickens, vol. 1: Macroeconomics, chap. 7, pp. 309–338. Blackwell

Publishing Ltd., Oxford.

Longin, F., and B. Solnik (2001): “Extreme Correlation of International Equity

Markets,” Journal of Finance, 56(2), 649–676.

Lynch, A. W., and J. A. Wachter (2013): “Using Samples of Unequal Length

in Generalized Method of Moments Estimation,” Journal of Financial and Quanti-

tative Analysis, 48(1), 277–307.
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