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Abstract

We merge the literature on downside return risk and liquidity risk and introduce the
concept of extreme downside liquidity (EDL) risks. The cross-section of stock returns
reflects a premium if a stock’s return (liquidity) is lowest at the same time when the
market liquidity (return) is lowest. This effect is not driven by linear or downside
liquidity risk or extreme downside return risk and is mainly driven by more recent
years. There is no premium for stocks whose liquidity is lowest when market liquidity
is lowest.
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1 Introduction

The recent empirical asset pricing literature documents that investors care about the sys-
tematic crash-exposure of stock returns and shows that stocks with such exposures earn a
significant risk premium (e.g., Kelly and Jiang, 2014; and Chabi-Yo et al., 2018). At the
same time, the theoretical literature shows that investors should care about the systematic
component of liquidity risk and there are successful attempts to show empirically that sys-
tematic liquidity risk also bears a premium in the cross-section of returns (e.g., Pastor and
Stambaugh, 2003, and Acharya and Pedersen, 2005).) The aim of our paper is to merge
these two important strands of the literature.

The starting point of our paper is the observation that liquidity is risky, shows commonality,
and varies over time (Chordia et al., 2000; Hasbrouk and Seppi, 2001; Huberman and Halka,
2001; Koch et al., 2016; Watanabe and Watanabe, 2008). Moreover, liquidity is shown to
behave differently in good and bad states of the world (Pastor and Stambough, 2003) with
periods of low market liquidity coinciding with periods of low market returns (Hameed et al.,
2010). During such bad times, margins are typically destabilizing while market illiquidity
and investors’ funding illiquidity reinforce each other, so that markets can suddenly dry up
(Brunnermeier and Pedersen, 2009) and liquidity ”evaporates” (Nagel, 2012).> Hence, the
previous literature shows that liquidity is behaving asymmetrically with extreme downward
spikes during periods of financial turmoil.

Our second basic assumption is investors’ aversion to the crash risk of an asset. Chabi-
Yo et al. (2018) find that investors demand additional compensation for holdings stocks
that are crash-prone, i.e., stocks that have particularly bad returns exactly when the market
crashes. They also theoretically show, that such a crash risk premium emerges in a stochastic

discount factor framework under the main assumption that the first four derivatives of the

!There are more recent replication exercises showing weaker or no significant results (Holden and Nam,
2019, and Kazumori et al., 2019).

2Downward liquidity spirals on markets can also occur due to tighter risk management of financial
institutions (Garleanu and Pedersen, 2007), predatory trading (Carlin et al., 2007) and the exceedance of
loss limits (Morris and Shin, 2004).



utility function have alternating signs, i.e., investors show non-satiation, they are risk-averse,
their absolute risk aversion is decreasing, and they are temperate.®> Therefore, the previous
literature documents that a stock’s sensitivity to extreme market crashes matters for its
pricing in the cross-section.

In this paper, we combine (i) the asymmetric, fragile nature of liquidity on financial markets
with (ii) investors’ aversion to crash risk and introduce different dimensions of extreme
downside liquidity (EDL) risks. In particular, we hypothesize that investors do not only
care about crash risk in market returns, but also care about crash risk in market liquidity
and the interplay between return and liquidity during periods of market stress. Specifically,
we expect them to dislike stocks that (i) become extremely illiquid exactly at the moment
when markets are extremely illiquid (EDL risk; ), (ii) realize their lowest return exactly at
the moment when markets are extremely illquid (EDL risky) and (iii) are extremely illiquid
exactly at the moment when market returns are extremely low (EDL risks). Thus, we expect
stocks with strong EDL risks to deliver a positive risk premium.

Our empirical approach is reminiscent (but different from) Acharya and Pedersen (2005)’s
liquidity-adjusted CAPM. In their model, an asset’s joint liquidity risk consists of three dif-
ferent risk components: (i) the (scaled) correlation of an asset’s liquidity to market liquidity,
(ii) the (scaled) correlation of an asset’s return to market liquidity, and (iii) the (scaled)
correlation of an asset’s liquidity to the market return. However, we want to focus on times
of market stress and when focusing on extreme events (e.g. in liquidity and returns), lin-
ear correlations fail to measure increased dependence in the tails of the distribution (see
Embrechts et al., 2002). Hence, the liquidity-adjusted CAPM cannot account for a stock’s
EDL risks and, as a result, might be misspecified if investors care especially about extreme
joint realizations in liquidity and returns, as hypothesized in this paper. Thus, we follow the
methodology of Chabi-Yo et al. (2018) and Weigert (2016) to capture extreme downside risk

with tail dependence coefficients and apply it to liquidity. We focus on the following three

3Experimental evidence supporting such higher order risk attitudes is provided in Noussair et al. (2014).



components of EDL risk:

(i)

(iii)

EDL risk; is defined as clustering in the lower left tail of the bivariate distribution
between individual stock liquidity and market liquidity. We argue that investors prob-
ably care less about how a specific stock’s liquidity co-moves with the liquidity of other
stocks when markets are relatively calm and when they face no urgent trading needs.
However, stocks that suddenly become very illiquid exactly during market crises (e.g.,
during the liquidity crisis of September 2008) are unattractive, while assets that re-
main relatively liquid in times of market stress are attractive assets to hold. This is
particularly relevant for institutional investors that might be subject to asset fire sale

problems or might strongly depend on funding liquidity conditions.*

EDL risksy is defined as clustering in the lower left tail of the bivariate distribution
between the individual stock return and market liquidity. Such clustering would be
particularly problematic for investors who face margin or solvency constraints as they
usually have to liquidate some assets to raise cash when their wealth drops critically. If
they hold assets with strong EDL risks, such liquidations will occur in times of extreme
market liquidity downturns. Liquidation in those times also leads to additional costs,
which are especially unwelcome to investors whose wealth has already dropped (see

also Pastor and Stambaugh, 2003).

EDL risks is defined as clustering in the lower left tail of the bivariate distribution be-
tween individual stock liquidity and the market return. We expect stock characterized
by such clustering to be unattractive assets particularly for institutional investors (such
as mutual fund managers) as they are often forced to sell in times of market return
crashes because their investors withdraw funds (Coval and Stafford, 2007) or financial

intermediaries withdraw from providing liquidity (Brunnermeier and Pedersen, 2009).

1During extreme market liquidity downturns, funding liquidity is often reduced as well (e.g., margin
requirements may increase; see Brunnermeier and Pedersen, 2009) and institutional investors are often
forced to liquidate assets and eventually realize additional liquidity costs.



If a selling investor holds securities with strong EDL risks, she will suffer from high
transaction costs at the precise moment when her wealth has already dropped and

additional losses are particularly painful.

We capture the three distinct EDL risks based on bivariate extreme value theory and cop-
ulas, using lower tail dependence coefficients (see Sibuya, 1960). The lower tail dependence
coefficient reflects the probability that a realization of one random variable (e.g. individual
stock liquidity) is in the extreme lower tail of its distribution, conditional on the realization
of the other random variable (e.g. market liquidity) also being in the extreme lower tail of
its distribution.’

As our main liquidity proxy we use innovations in the Amihud (2002) Illiquidity Ratio,
analogous to Acharya and Pedersen, 2005.° Using weekly data from 1963 to 2012 we esti-
mate lower tail dependence coefficients for (i) individual stock liquidity and market liquidity
(EDL risky ), (ii) individual stock return and market liquidity (EDL risks), and (iii) individ-
ual stock liquidity and the market return (EDL risks) for each stock ¢ and week ¢ in our
sample.

We then relate the stocks’ three EDL risks to future returns. Our asset pricing tests—
based on portfolio sorts, factor regressions, and Fama and MacBeth (1973) regressions on the
individual firm level—are completely out-of-sample and focus on the relationship between
past EDL risks and future excess returns. We document that there exists a positive impact
of EDL risks and EDL risks on the cross-section of average future returns.

From 1969 to 2012, a portfolio that is long in stocks with strong EDL risks (EDL risks) and
short in stocks with weak EDL risks (EDL risks) yields a significant average excess return of

4.04% (2.41%) p.a., while EDL risk; does not bear an economically or statistically significant

5In Tables C.1 and C.2 of the Appendix, we also investigate the asset pricing implications of extreme
upside liquidity (EUL) risk measures. These EUL risk measures are defined as the tail dependence coefficients
between (i) a stock’s liquidity and market illiquidity (EUL risk; ), (ii) a stock’s return and market illiquidity
(EUL risks), and (iii) a stock’s illiquidity and the market return (EUL risks). We show that these upward
modifications of the EDL risks are all very close to zero and that these tail dependencies do not exhibit a
systematic return impact. Hence, we do not consider them in the main part of the empirical analysis.

6We also employ several other low-frequency and high-frequency liquidity measures in robustness checks;
see Section 4.1.



premium. These findings are consistent with investors mainly being worried about stocks
realizing their worst individual returns when markets are extremely illiquid and stocks being
extremely illiquid when the market crashes, but less about stocks being extremely illiquid
when the market is extremely illiquid. The latter finding might be due to the fact that many
investors do not have to trade in periods of extreme market illiquidity as long as returns are
not also very low.

We confirm that the premium for the priced EDL risks is not explained by other risk- and
firm characteristics. Hence, our results suggest that EDL risk, and EDL risks are important
determinants of the cross-section of expected stock returns.

When investigating the variation of the EDL risk premiums over time, we observe that
the significant premiums are mainly realized during the second half of our sample period.
These results suggest that investors have become more concerned about a stock’s EDL risks
and EDL risks during the second half of our sample. This finding is broadly consistent with
results from the empirical option pricing literature. Rubinstein (1994) and Bates (2008)
find that deep out-of-the-money index puts (i.e., financial derivatives that offer protection
against strong market downturns) became more expensive after the stock market crash in
1987. These results are also in line with the argument put forward by Gennaioli et al.
(2015) that investors fear a future crash more when there is a recent crash they still vividly
remember. Also consistent with increased crash aversion after market crises, Chabi-Yo et
al. (2018) show that the premium for a stock’s extreme downside return risk also increases
substantially after severe market downturns.

The stability of our results is confirmed in a battery of additional robustness tests. These
tests include using low-frequency and high-frequency liquidity proxies other than the Amihud
(2002) Illiquidity Ratio, using different estimation horizons and procedures for the estimation
of the tail dependence coefficients, and using different regression models as well as return
adjustments. Furthermore, we find that our results do also hold in a value-weighted analysis,

but only if we exclude the top vigintile of stocks according to their market capitalization,



which are extremely liquid and for which liquidity-related risks thus are a minor concern to
start with.

Our study contributes to three strands of the literature. First, we contribute to the lit-
erature on the impact of liquidity and liquidity risk on the cross-section of stock returns.
Amihud and Mendelson (1986) show theoretically and empirically that stocks with low lev-
els of liquidity deliver higher average returns.” More recently, Menkveld and Wang (2012)
find that stocks with higher probabilities of realizing extremely low liquidity levels (called
"liquileak probability”) command a premium. Thus, while they focus on the impact of in-
dividual extreme illiquidity levels, we focus on the joint likelihood that an individual stock
is extremely illiquid (or has an extremely low return) when market liquidity (the market
return) is extremely low, i.e., we focus on a systematic risk component.

There are also numerous studies investigating whether systematic liquidity risk is a priced
factor. Pastor and Stambaugh (2003) find that stocks with high loadings on the market
liquidity factor outperform stocks with low loadings. Acharya and Pedersen (2005) derive
an equilibrium model for returns that includes the liquidity level and a stock’s return and
liquidity covariation with market liquidity and the market return. They provide some evi-
dence that liquidity risk is a priced factor in the cross-section of stock returns. This result
is confirmed in an international setting by Lee (2011). However, Hasbrouck (2009) raises
doubts on the existence of a premium for liquidity risk. He documents that in a long his-
torical sample (U.S. data from 1926 to 2006), there is only weak evidence that liquidity
risk is a priced factor. Some of the studies on systematic liquidity risk specifically analyze
time-variation across crises and "normal times”, which further motivates our focus on the
extreme downside. Watanabe and Watanabe (2008) find that liquidity risk and the pricing
of liquidity risk vary over time, with higher liquidity risk during times of high volatility.
Acharya et al. (2013) analyze the relation between liquidity in corporate bonds, stocks, and

treasury bonds. They also find evidence for time-varying systematic risk. We contribute to

"More recent papers find weaker evidence for liquidity levels impacting future returns (e.g., ? or ?).



the existing literature by showing that new dimensions of liquidity risk are priced.

Closely related to our analysis are concurrent papers by Anthonisz and Putnins (2017)
and Wu (2017). Anthonisz and Putnins (2017) extend the Acharya and Pedersen (2005)
model and analyze whether the downside version of their liquidity betas explains returns.
Specifically, they define lower partial moment (LPM) liquidity risks which are computed as
the three Acharya and Pedersen (2005) liquidity risks conditional on the liquidity-adjusted
market return being negative. They find that mainly the LPM liquidity risk component that
is based on individual liquidity and market return co-movements bears a return premium
(but not the others). While this particular component seems to be related to our EDL risks
(which is driven by joint occurences of extremely low market returns and extreme individual
stock illiquidity), our results hold after controlling for the Anthonisz and Putnins (2017)
measures. It is not surprising that the return premia for the EDL risks are distinct from
the return premia for the LPM liquidity risk by Anthonisz and Putnins (2017): EDL risk
is conceptually different from the LPM liquidity risk, as the latter places no particular
emphasis on tail events. In contrast, EDL risk is concerned with the worst return and worst
liquidity realizations. Furthermore, while the Anthonisz and Putnins (2017) measures are
based on correlations between individual/market level returns/liquidity all conditional on
liquidity-adjusted market returns being negative (i.e., they are measured within the same
negative subspace for liquidity adjusted market returns), our three EDL risks are based on
realizations of returns and liquidity in three different joint extreme states. Wu (2017) applies
the return tail risk concept of Kelly and Jiang (2014) to liquidity and documents that stocks
with strong sensitivities to an aggregate liquidity tail risk factor earn high expected returns.
In our empirical analysis, we also explicitly control for the Wu (2017) liquidity tail risk
sensitivity and find our results to hold.

Second, our paper relates to the empirical asset pricing literature on rare disaster and
downside crash risk. Ang et al. (2006a) find that stocks with high downside return betas

earn high average returns. Kelly and Jiang (2014), Chabi-Yo et al. (2018), Chabi-Yo et



al. (2019), and Cholette and Lu (2011) investigate the impact of a stock’s return crash
risk and return tail risk on the cross-section of expected stock returns. They find that
investors demand additional compensation for holding stocks that are crash-prone, i.e., stocks
that have particularly bad returns exactly when the market crashes. In an international
setting, Berkman et al. (2011) show that rare disaster risk premia increase after crises. We
complement their findings by showing that EDL risk premia also increase after the 1987
crash.

Third, we extend the literature on the application of extreme value theory and copulas
in the cross-sectional pricing of stocks. Copulas are mainly used to model bivariate return
distributions between different international equity markets (see Longin and Solnik, 2001,
and Ané and Kharoubi, 2003) and to measure contagion (see Rodriguez, 2007).® Chabi-
Yo et al. (2018) investigate extreme dependence structures between individual stocks and
the market and find that extreme dependencies are priced factors in the cross-section of
stock returns. Until now, extreme value theory has been applied to describe dependence
patterns across different markets and different assets as well as individual stock returns
and the market return. However, to the best of our knowledge, ours is the first paper to
investigate extreme dependence structures between individual level and market level liquidity

and returns, respectively.

2 Methodology and Data

Section 2.1 defines our main measure of liquidity and outlines the calculation of liquidity
shocks. In Section 2.2 we introduce our estimation method for EDL risk. Section 2.3
describes our stock market data and the development of aggregate EDL risk over time and

provides summary statistics.

8Further applications include the use of copulas in dynamic asset allocation (Patton, 2004). Poon et al.
(2004) suggest a general framework to identify tail distributions based on multivariate extreme value theory.



2.1 Measuring Liquidity

Liquidity is a broad, multi-dimensional concept, which makes it hard to find a single
theoretically satisfying measure for it. Like Acharya and Pedersen (2005), we assume that
the liquidity proxies used in this study should measure the 'ease of trading securities’, without
focusing on one particular dimension of liquidity. The limited availability of intradaily data
(particularly before the 1990s) forces us to rely on a low-frequency liquidity proxy as the
main measure of liquidity for our main tests.® Fortunately, many low-frequency proxies are
highly correlated with benchmark measures based on high-frequency data (Goyenko et al.,
2009; Hasbrouck, 2009).

We follow Amihud (2002), Acharya and Pedersen (2005) and Menkveld and Wang (2012)
and use the Amihud Illiquidity Ratio (illiq) as our main measure of illiquidity. Hasbrouck
(2009) finds that illiq correlates most highly with market microstructure price impact mea-

sures. Illiq of stock ¢ in week t is defined as

i

) days, i |
illigi = : Ll 1
qt days; dz:; ‘/tti ( )

where 7, and V}}, denote, respectively, the return and dollar volume (in millions) on day

d in week t and days. is the number of valid observations in week t for stock i. We use
illig! as the illiquidity of stock 4 in week ¢ if it has at least three valid return and non-zero
dollar-volume observations in week t.

There are two caveats when using illiq as a proxy for illiquidity. First, illiq can reach
extremely high values for stocks with very low trading volume. Second, inflation of dollar-

volume (the denominator) makes illiq non-stationary. To solve these problems, we follow

9We verify the stability of our results with various other low-frequency (for 1963-2012) and high-frequency
(for 1996-2010) liquidity proxies in Section 4.1. A detailed description of all liquidity measures used in this
study is given in the Appendix A.



Acharya and Pedersen (2005) and define a normalized measure of illiquidity, ¢!, by

¢t = min(0.25 + 0.30 - illig} - P™, 30) (2)

where P/", is the ratio of the capitalizations of the market portfolio (NYSE and AMEX)
at the end of week ¢t — 1 relative to that at the end of July 1962. The adjustment by P/,
alleviates problems due to inflation. Additionally, a linear transformation is performed to
make c! interpretable as effective half-spread. Finally, by capping the illiquidity proxy at a
maximum value of 30%, we ensure that our results are not driven by unrealistically extreme
outliers of illiq.!°

Finally, to simplify the estimation of EDL risk (as discussed in Section 2.2), we convert

normalized lliquidity into normalized liquidity via

di = —cl. (3)

The normalized liquidity measure d! is very persistent: Ljung-Box tests reject the null-
hypothesis of 'no autocorrelation at the first lag’ at a 10% significance level for 92% of stocks.

Thus, we will focus on the innovations of the normalized liquidity measure

li = di - Et—l(di) (4)

of a stock when computing our EDL risk measures. To calculate the expected normalized
liquidity E;_1(d}) for each stock ¢ and week ¢, we fit an AR(4) time series model over the

liquidity time series of stock i.'* Hence,

10We check that this winsorization procedure for illiq from Acharya and Pedersen (2005) does not drive
our results by excluding the 1% to 6% of stocks, for which EDL risk estimates rely on one or more winsorized
illigs. Economic and statistical significance remain unchanged.

"The number of lags is set at 4 since the partial autocorrelation function of d¢ becomes insignificant before
the fifth lag for most stocks in the sample. In order to consider possible time-variation of the illiquidity process
(such as increased mean liquidity or faster mean-reversion) and to keep the innovation estimates fully out-
of-sample, the AR(4)-parameters are estimated using a three year moving window of data up to week ¢ — 1
of the liquidity series of stock i. We verify the robustness of our results to using simple liquidity-differences

10



E, y(d)=ao+a-d_,+ag-d_y+az-d_s+a4-di_,. (5)

We then use [! for the computation of the EDL risks for stock ¢ at week ¢ as described in
the following section. For a more detailed description of the computation of the liquidity

innovations, see Appendix A.

2.2 Measuring EDL Risk

We estimate lower tail dependence coefficients to capture (i) EDL risk; between individ-
ual stock liquidity and market liquidity, (ii) EDL risky between individual stock return and
market liquidity, and (iii) EDL risks between individual stock liquidity and market returns.
Intuitively, the lower tail dependence coefficient between two random variables reflects the
likelihood that a realization of one random variable is in the extreme lower tail of its distri-
bution conditional on the realization of the other random variable also being in the extreme
lower tail of its distribution. Given two random variables X; and X5, lower tail dependence

Ap is formally defined as

AL = Ap(X1, X)) = lim P(X; < FH(u)| X < FyH(uw)), (6)

u—0+

where u € (0,1) denotes the value of the distribution function, i.e., lim,_,o; indicates the
limit if we approach the left tail of the distribution from above.!? If Ay, is equal to zero (as
is the case for joint normal distributions), the two variables are asymptotically independent
in the lower tail.

Based on Equation (6), we can then subsequently define the respective EDL risks

instead of estimated liquidity-shocks in Section 4.2.
12Gimilarly, the coefficient of upper tail dependence Ay can be defined as

M= Ap(Xy, Xo) = lim P(X; > FyHw)|Xe > Fy H(w)).

u—1—

11



EDL risk, := EDL risk, (l;, ,,) = lim P(l; < F; ' (u)|ln < F ' (u)), (7)

u—0+ v = Tim

EDL risky := EDL risky(r;, ) = lim, P(r; < F N (u)|ly, < FH(w), (8)
U— m

EDL risks := EDL risks(l;, r,,) = 11I(I)1+ P(l; < F N u)|r, < F- N uw)), (9)
u— 4 m

where r; (r,,) denotes the stock’s (market) excess return and /; (I,,) denotes the stock’s
(market) liquidity.
The lower tail dependence coefficient between two variables can be expressed in terms of
a copula function C' : [0.1]> — [0,1].® McNeil et al. (2005) show that a simple expression
for Ay in terms of the copula C' of the bivariate distribution can be derived based on
A = lim M, (10)

u—0+ U

if F} and F; are continuous. Equation (10) has analytical solutions for many parametric
copulas. In this study we use 12 different basic copula functions. A detailed overview of these
basic copulas and the corresponding lower tail dependencies (and upper tail dependencies)
is provided in Table B.1 of Appendix B. As in Chabi-Yo et al. (2018) and Weigert (2016),
we form 64 convex combinations of the basic copulas consisting of one copula (out of four)
that allows for asymptotic dependence in the lower tail, C},, one copula (out of four) that
is asymptotically independent, Cl,, and one copula (out of four) that allows for asymptotic

dependence in the upper tail, C),:

13Copula functions isolate the description of the dependence structure of the bivariate distribution from
the univariate marginal distributions. Sklar (1959) shows that all bivariate distribution functions F(z1,x2)
can be completely described based on the univariate marginal distributions F; and F5 and a copula function
C'. For a detailed introduction to the theory of copulas, see Nelsen (2006).

12



Clur,uz,©) = wy-Cy, (ur,uz; )+ wy - Cy, (ur,ug;6s)

+(1 — w1 — w2) : CAU(UhUz; 93)» (11)

where © denotes the set of the basic copula parameters 6;, i = 1,2, 3 and the convex weights
w; and ws.

To determine which convex copula combinations deliver the best fit for the data, we use
3-year rolling windows of weekly data. We fit all 64 convex copula combinations to the
bivariate distribution of each stock’s (i) liquidity and market liquidity, (ii) return and market
liquidity, and (iii) liquidity and market return in the rolling window. We select a specific
copula combination for each stock and EDL risk component based on the estimated log-
likelihood value among the 64 different copulas.!* We then use the copula with the best fit
for the respective stock and EDL risks over the previous three years in the estimation of tail
dependence coefficients using Equation (10). As this procedure is repeated for each stock i
and week ¢, we end up with a panel of tail dependence coefficients EDL risk;},, EDL risk’, and
EDL risk? at the stock-week level. For a more detailed description of the estimation method,
we refer to Appendix B. The level (rather than innovations) of the EDL risk measures can be
directly used in our later asset pricing tests, as the LTDs are determined based on liquidity

innovations already (see Section 2.1).

2.3 Data and the Evolution of Aggregate EDL Risk

We obtain data for all common stocks (CRSP share codes 10 and 11) traded on the

NYSE/AMEX between January 1, 1963 and December 31, 2012. The period from 1963

4Table B.2 in the Appendix reports the results of this selection method. Over all stock-week observations,
copula (1-D-IV) of Table B.1 is the most frequently selected copula for the EDL risk; distribution, copula
(1-A-IV) is the most frequently selected copula for the EDL risks and EDL risks distribution. Copula (1-D-
IV) relates to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-Gauss-
Rotated Clayton-copula. We verify the robustness of our results to using worse-fitting and likelihood-weighted
copulas in Section 4.2.
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through 1965 is used for the calculation of first illiquidity innovations and the period from
1966-1968 is used to fit the first copulas and estimate EDL risk (as explained in Section 2.2
and Appendix B). Asset pricing tests are performed in the time period from 1969-2012.

To keep our liquidity measure consistent across stocks, we exclude common stocks traded
on NASDAQ since NASDAQ volume data includes interdealer trades and thus is not directly
comparable to NYSE/AMEX volume data. For each firm i and each week ¢ we estimate the
EDL risks (EDL risk},, EDL risk? and EDL risk},) based on weekly return- and liquidity
data over a rolling 3-year window. We use the weekly value-weighted CRSP market return
and the AR(4)-innovations of the value-weighted average of liquidity over all stocks in the
sample as market return and market liquidity, respectively. Using a 3-year rolling horizon of
weekly data offsets two potential concerns: First, to obtain reliable estimates for the EDL
risk coefficients, we need a sufficiently large number of observations. Second, we try to avoid
very long estimation intervals as EDL risk is likely to be time-varying.!® Similarly, we use
a weekly frequency for our return and liquidity observations to trade off the low number of
observations (and thus power) in monthly data with the noisiness of our liquidity proxies at
higher frequencies.!®

To avoid microstructure issues, we exclude data for all weeks ¢ in which the stock’s price at
the end of week t — 1 is less than $2. We retain the EDL risk estimates of all stocks in week
t that have more than 156/2 = 78 valid weekly return and liquidity observations during the
last 3 years. Overall, we obtain 3,670,214 firm-week observations after applying these filters.
The number of firms in each year over our sample period ranges from 1,290 to 2,036 with

an average of 1,693. Table 1 provides summary statistics.
[Insert Table 1 about here]

We report the mean, the 25%, the 50%, the 75% quantile and the standard deviation

150ur results are stable if we use rolling horizons of 1-year, 2-years, or 5-years, respectively (see Section
4.2).

6For comparison, Ang et al. (2006a) use daily data to estimate downide betas arguing that such a high
frequency is necessary to estimate downside risk precisely while Acharya and Pedersen (2005) use monthly
Amihud illiquidity ratios to estimate liquidity shocks.
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for the three EDL risks, the monthly excess return over the risk-free rate, and other key
variables in this study. The mean (median) of EDL risk; is 0.063 (0.035), the mean (median)
of EDL risk, is 0.071 (0.046), and the mean (median) of EDL risks is 0.054 (0.028). The
respective standard deviation for EDL risk; (EDL risky, EDL risks) is 0.077 (0.078, 0.068).17

The mean monthly excess return across all stocks is 0.82%. We present the excess return
in month ¢ + 1 as we will relate returns in this month to EDL risk measures determined in
month ¢ in our later asset pricing tests (Section 3). Summary statistics of additional firm
characteristics are displayed in the rest of the table. For detailed descriptions of all variables,
see Appendix D. We report cross-correlations between the key variables used in this study

in Table 2.
[Insert Table 2 about here]

Our results reveal that the magnitude of the linear correlations between the different EDL
risks and other independent variables is moderate. EDL risk; displays correlations with
EDL risks and EDL risks of 0.12 and 0.24, respectively, while EDL risky and EDL risks
show a correlation of 0.07. The low correlations show that the three EDL risks capture
different dimensions of liquidity risk. All EDL risks are positively correlated with EDR risk
(correlations of 0.13, 0.26, and 0.10), market beta (0.09, 0.10, and 0.15), and downside linear
return risk (0.06, 0.11, and 0.07). Interestingly, all EDL risks are only weakly correlated
with (1, (correlations of 0.02, -0.02, and 0.05) and /5, (correlations of 0.03, -0.03, and 0.14);
this provides first evidence that they capture aspects of liquidity risk that are different from
the liquidity risks analyzed in Acharya and Pedersen (2005).

The EDL risks are slightly negatively correlated with illiquidity and positively correlated

with firm size. These associations might be caused by the greater systemic risk of large and

1"We also compute the corresponding extreme upside liquidity (EUL) risk coefficients with upper tail
dependence coefficients. The mean for EUL risk; (EDL risky, EDL risks) amounts to 0.021 (0.021, 0.027)
and is much smaller than the corresponding EDL risk value. Tables C.2 and C.3 in the Appendix report
that there is no systematic impact of any EUL risk component on average future stock returns. Our results
on the impact of EDL risky and EDL risks on average future stock returns are unaffected when controlling
for the EUL risks.
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usually more liquid firms. The EDL risks measure a conditional probability, which does not
automatically increase with the volatility of returns and liquidity shocks. In contrast, the
liquidity betas from Acharya and Pedersen (2005) are mechanically linked to the volatility of
liquidity shocks, which itself is strongly related to illiquidity and firm size (e.g., 51 exhibits
a correlation of 0.26 with illquidity and —0.21 with firm size).

To better understand the temporal variation of EDL risk, we investigate the development of
aggregate EDL risk;, EDL risks, and EDL risks over time. Aggregate EDL risk; (i = 1,2, 3),
is defined as the cross-sectional, value-weighted, average of EDL risk; ;; over all stocks j in

week ¢ in our sample. Panel A of Figure 1 plots the time series of the aggregate EDL risks.

[Insert Figure 1 about here]

In contrast to the low cross-sectional correlations between the EDL risks, all aggregate EDL
risk time series are positively related with pairwise correlation coefficients of 0.63 (aggregate
EDL risk; and aggregate EDL risksy), 0.56 (aggregate EDL risk; and aggregate EDL risks),
and 0.58 (aggregate EDL risky and aggregate EDL risks). The time-series exhibit occasional
persistent spikes that seem to coincide with worldwide market crises: In particular, we
observe peaks for EDL risk; and EDL risks during 1987-1990 (the time period after Black
Monday in October 1987, the largest one-day percentage decline in U.S. stock market history)
and for all EDL risks during 2008-2011 (the Global Financial Crisis).

Finally, we check whether future EDL risk can be predicted by investors using realized
EDL risk. To do so, we analyze the persistence of EDL risk;, EDL risky, and EDL risks in
Fama and MacBeth (1973) regressions on the firm level and display the results in Table A.2
of the Appendix. We find that each realized EDL risk component significantly predicts the

future EDL risk component, estimated from non-overlapping 156-week windows.

16



3 EDL Risk and Future Returns

In the main part of the empirical analysis we relate EDL risk estimates at month ¢ to
portfolio and individual stock excess returns over month ¢ 4+ 1. Note that we only use data
observable to the investor at the end of month ¢ in order to predict stock returns in month
t + 1. Strictly separating the estimation window for the EDL risks and the subsequent
return prediction window alleviates concerns related to overfitting. To properly account for
the impact of autocorrelation and heteroscedasticity on statistical significance in portfolio
sorts, factor models, and multivariate regressions, we use Newey and West (1987) standard

eIrors.

3.1 Univariate Portfolio Sorts

We start our empirical analysis with univariate portfolio sorts. For each month t we
sort stocks into five quintiles based on their EDL risks (i.e., EDL risk;, EDL risks, and
EDL risks) estimated over the past three years as described in Section 2.2. We then in-
vestigate the equally-weighted average excess return over the risk-free rate for these quin-
tile portfolios as well as differences in average returns between quintile portfolio 5 (strong
EDL risky, EDL risky, and EDL risks) and quintile portfolio 1 (weak EDL risky, EDL risks,
and EDL risks) over month ¢ + 1. Moreover, we also evaluate portfolio alphas based on
Carhart (1997)’s four factor model augmented by the Pastor and Stambaugh (2003) traded
liquidity factor and the Sadka (2006) fixed-transitory and variable-permanent liquidity fac-
tors.’® We use these augmented models instead of the basic CAPM or Carhart (1997) model
as our benchmark models to control for standard systematic liquidity risk. For each sort,

we also provide annualized spreads in returns and alphas between quintile portfolio 1 and

18To compute average alphas, we regress the monthly ¢ + 1 return of the respective EDL risk portfolios
on the monthly CRSP US excess market return, SMB, HLM, and MOM factors as well as the Pastor and
Stambaugh (2003) and Sadka (2006) liquidity risk factors. Data for the US excess market return, SMB,
HLM, and MOM factors are provided on Kenneth French French’s homepage. Data on the Pastor and
Stambaugh (2003) traded liquidity risk factor is obtained from the homepage of Lubos Pastor. Data on
the Sadka (2006) fixed-transitory and variable-permanent liquidity factors is obtained from the homepage of
Ronnie Sadka.
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quintile portfolio 5.
[Insert Table 3 about here]

We begin with univariate portfolio sorts based on EDL risk; in Panel A. Column (1) reports
average EDL risk; coefficients of the stocks in the quintile portfolios. There is considerable
cross-sectional variation in EDL risk;; average EDL risk; ranges from 0.00 in the bottom
quintile portfolio to 0.19 in the top quintile portfolio. However, we do not find any pricing
patterns due to EDL risk; in columns (2) to (4): Returns and alphas of stocks with strong
EDL risk; are almost identical to the returns and alphas of stocks with weak EDL risk,
suggesting that investors are not that much concerned about stocks that are extremely
illiquid when markets are extremely illiquid.

We proceed to analyze univariate portfolio sorts based on EDL risk, in Panel B. We ob-
serve, in column (1), that the dispersion between stocks with strong EDL risks and weak
EDL risks is 0.17, and is thus similar to the dispersion observed in the case for EDL risk;.
More importantly, and in contrast to the results for EDL risk;, column (2) shows that stocks
with strong EDL risk, earn significantly higher average future returns than stocks with weak
EDL risky. Stocks in the quintile with the highest (lowest) EDL risk, earn a monthly av-
erage excess return of 0.78% (0.44%). The return spread between quintile portfolio 5 and
1 is 0.34% per month (4.04% per annum), which is statistically significant at the 1% level
(t-statistic of 4.52).'% The results also show that the returns are monotonically increasing
from the lowest to the highest EDL risk, quintile. This pattern is also confirmed based on
the Patton and Timmermann (2010) monotonicity test, which clearly rejects the null hy-
pothesis of a flat or decreasing pattern over the five EDL risky portfolio returns at the 1%
significance level.

Columns (3) and (4) provide results when we look at average alphas based on the Carhart

19 As we are sorting stocks by their sensitivity to extreme market states, one might argue that high non-
normality of strong-weak returns could be a problem for the standard measurement of statistical significance
in a finite sample. This is not the case: Bootstrapped 99% confidence intervals (unreported) for the EDL risks
difference portfolio remain comfortably above zero.
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(1997) 4-factor model augmented by the Pastor and Stambaugh (2003) traded liquidity factor
and the Sadka (2006) fixed-transitory and variable-permanent liquidity factors instead of raw
returns. We find that the spreads between quintile portfolios 5 and 1 amount to 0.34% and
0.41% per month (4.04% and 4.95% per annum) and are statistically significant at the 1%
level (with t-statistics of 3.63 and 4.00) in both cases. Hence, accounting for Pastor and
Stambaugh (2003)’s and Sadka (2006)’s liquidity risk factors does not reduce the return
spread due to EDL risksy, suggesting that EDL risks is capturing a different dimension of
liquidity than the linear systematic liquidity risk factors used here.?°

We finally investigate univariate portfolio sorts based on EDL risk; in Panel C. Similar
to the results obtained for EDL risks, we find significant pricing implications for EDL risks.
Column (2) documents that stocks in the quintile with the highest EDL risks earn future
monthly returns of 0.75%, while stocks in the quintile with the lowest EDL risks earn future
monthly returns of 0.55%. The spread in monthly (annual) returns amounts to 0.20% (2.55%)
and is statistically significant at the 5% level (t-statistic of 2.55).2! These results are again not
affected when we risk-adjust the returns by the Carhart (1997) four factor model augmented
by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-
transitory and variable-permanent liquidity factors in columns (3) and (4). The annualized
spread in risk-adjusted returns is 2.55% and 3.17%, respectively, with statistical significance
at the 5% level (t-statistics of 2.52 and 2.64).

In summary, the results from Table 3 provide evidence that the components EDL risk,
and EDL risks have an impact on the cross-section of expected stock returns. Stocks with
strong EDL risky (EDL risks) earn higher average future returns and liquidity-risk aug-
mented Carhart (1997) alphas than stocks with weak EDL risks (EDL risks). The finding

20Note that in our factor models we always include the SMB size factor of Fama and French (1993). The
SMB factor shows a time-series correlation with the illiquidity level factor of Amihud(2002) of 0.97. Hence,
we implicitly control for the illiquidity level in our factor regressions. We will also later explicitly control for
the illiquidity level in Fama and MacBeth (1973) regressions in Section 3.4.

21Although the returns are not completely monotonically increasing from the lowest to the highest
EDL risks quintile, we confirm the monotonic relationship based on the Patton and Timmermann (2010)
test. This test rejects the null hypothesis of a flat or decreasing pattern over the five EDL risks portfolio
returns at the 10% significance level.
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that EDL risk; (commonality in liquidity) is not priced is analogous to results by Acharya
and Pedersen (2005) for linear liquidity risk. In the following sections, we will focus on
asset pricing results based on EDL risks and EDL risks. Nevertheless, we will use a stock’s

EDL risk; as a control variable in our later multivariate regressions.

3.2 Bivariate Portfolio Sorts

The correlations in Table 2 document that EDL risks and EDL risks are correlated with
other related (liquidity and return) risk measures and firm characteristics. For example, an
increase in EDL risk, tends to go along with an increase in linear downside liquidity (3;)
risk and extreme downside return (EDR) risk. Hence, the higher average future returns and
alphas for strong EDL risky portfolios could be driven by differences in these other variables.
To isolate the return premium of EDL risky and EDL risks from the impact of other related
characteristics, we now conduct dependent equal-weighted portfolio double sorts. We start
to investigate bivariate equal-weighted portfolio sorts based on EDL risks and other variables

in Table 4; as for the univariate sorts, we evaluate average excess returns over month ¢ + 1.
[Insert Table 4 about here]

In Panel A of Table 4, we investigate whether the EDL risk, premium is explained by
Acharya and Pedersen (2005)’s corresponding linear liquidity risk component, 5o (see Ap-
pendix D), which measures systematic variation between a stock’s return and market lig-
uidity. We first form five portfolios sorted by [Srs. Then, within each S quintile, we sort
stocks into five portfolios based on EDL risks. We report the average monthly ¢ + 1 portfolio
returns in excess of the risk-free rate for the 25 575 x EDL risky portfolios and find that
strong EDL risk, stocks clearly outperform weak EDL risks stocks in all 1o quintiles. The
return difference is, on average, 0.25% per month, which is statistically significant at the
1% level. Similar results are obtained when we adjust raw returns by the Pastor and Stam-

baugh (2003) and Sadka (2006) liquidity-risk augmented Carhart (1997) model. Differences
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in alphas are on average 0.26% and 0.31% per month, respectively, and are both statistically
significant at the 1% level. Hence, regular linear 7, liquidity risk as analyzed in Acharya
and Pedersen (2005) cannot account for the reward earned by holding stocks with strong
EDL risks.

In Panel B of Table 4, we analyze whether the EDL risk, premium is explained by the
corresponding linear downside liquidity risk, 5;, (see Appendix D), which — like EDL risk,
— focuses on systematic downside variation between a stock’s return and market liquidity.
However, the conceptional difference between EDL risks and 3, , risk is that the latter focuses
on systematic risk below the mean of market liquidity, while the former explicitly focuses on
extreme events. We again find that in all 3;, quintiles strong EDL risks stocks significantly
outperform weak EDL risk, stocks with an average return of 0.31%. Average liquidity-risk
augmented Carhart (1997) alphas are also significantly larger for strong EDL risk, stocks
compared to weak EDL risky stocks with spreads of 0.28% and 0.38% (t-statistics of 4.28
and 4.71). Thus, linear downside liquidity risk cannot account for the EDL risk, premium
either.

In Panel C and Panel D of Table 4, we examine whether EDL risks is different from extreme
downside return risk, EDR risk (see Appendix D), and liquidity tail risk (as in Wu, 2017).
We can confirm the findings of Chabi-Yo et al. (2018) and Wu (2017) that stocks with high
EDR risk (liquidity tail risk) outperform stocks with low EDR risk (liquidity tail risk). More
importantly in our context, we show that the pricing impact of EDL risks is not subsumed
by neither EDR risk nor liquidity tail risk. On average, the spread between stocks with
strong EDL risky and weak EDL risky controlling for EDR risk (liquidity tail risk) is 0.27%
(0.24%) per month and is statistically significant at the 1% level. Results are very similar
when we evaluate alphas instead of returns.

Finally, Panel E investigates whether the EDL risk, premium can be explained by a stock’s
exposure to lower-partial moment (LPM) liquidity risk 2 (as in Anthonisz and Putnins, 2017)

between a stock’s return and market liquidity. At first sight, EDL risky and LPM, liquidity
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risk seem to be conceptionally related. However, they have to be clearly distinguished since
(i) EDL risks focuses on extreme events instead of below mean events (as in the case of LPM,
liquidity risk), and (ii) EDL risks has different conditioning subsets (extremely low market
liquidity instead of negative liquidity-adjusted market returns as in the case of the Anthonisz
and Putnins (2017) LPM, liquidity risk). As a consequence, it is not surprising that we find
empirical support that the impact of EDL risk, on future returns is not subsumed by the
impact of LPM, liquidity risk. The average return and alpha differences between strong
EDL risky stocks and weak EDL risky stocks are economically meaningful and statistically
significant at the 1% level.

In the same way as for double-sorts based on EDL risky, we perform bivariate equal-
weighted portfolio sorts based on EDL risky and other liquidity and return risk measures.

Results are shown in Table 5.
[Insert Table 5 about here]

As for the portfolio double sorts based on EDL risks, we observe that the pricing effect of
EDL risks is different from the impact of the corresponding linear liquidity risk component,
Brs, the corresponding linear downside liquidity risk component, 3,5, EDR risk, liquidity
tail risk, and lower-partial moment (LPM) liquidity risk 3. Based on the respective double
sorts, stocks with strong EDL risks outperform stocks with weak EDL risks by statistically
significant 0.17% to 0.22% per month (with t-statistics ranging from 2.32 to 3.36). If we
adjust returns for the Pastor and Stambaugh (2003) and Sadka (2006) liquidity-risk aug-
mented Carhart (1997) models, these spreads range from 0.17% to 0.26% (with t-statistics

ranging from 1.83 to 2.97).22

22Tn additional tests shown in Table C.3 of the Appendix, we also look at reversed bivariate equal-weighted
portfolio sorts based on EDL risks (first sort) and LPM liquidity risk, (second sort), as well as EDL risks
(first sort) and LPM liquidity risks (second sort). We observe that the documented premium for Anthonisz
and Putnins (2017)’s LPM liquidity risks remains priced when we explicitly control for EDL risks in these
sorts. This result supports the notion that EDL risk and LPM liquidity risk are capturing different aspects
of liquidity risk which are separately priced. Additional findings about the joint impact of EDL risks and
LPM liquidity risks in multivariate regressions are reported in Section 3.4 and Table C.4 of the Appendix.
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To summarize, dependent bivariate portfolio sorts provide strong evidence that EDL risk,
and EDL risks are priced in the cross-section of expected stock returns when explicitly con-
trolling for S, and B3, 57, and 85, EDR risk, liquidity tail risk (as in Wu, 2017), and
LPM liquidity risk, and LPM liquidity risk; (as in Anthonisz and Putnins, 2017), respec-
tively. So far, our analysis relies on return and alpha differences and we only control for the
impact of systematic risk characteristics indirectly by double-sorting portfolios. To control
for the exposure to other systematic risk factors, we now investigate whether the EDL risks
and EDL risky premiums can be explained by alternative multivariate factor models sug-

gested in the literature.

3.3 Factor Models

We regress the monthly ¢ + 1 returns of the EDL risks and EDL risks quintile difference
portfolio on various factors that have been shown to determine the cross-section of average
stock returns.?® We then investigate risk-adjusted monthly returns according to these factors.

Table 6 reports the results for the EDL risk, strong-weak quintile difference portfolio (PF5-
1).
[Insert Table 6 about here]

Results for our main specifications are reported in Panel A of Table 6. In regressions (1)
and (2) we adjust the EDL risks quintile difference portfolio for its exposure to the market
factor and the Carhart (1997) four-factor model. We find that the EDL risk, portfolio loads
significantly positive on the market factor and significantly negative on the size factor. The
risk-adjusted alpha is significantly positive at the 1% level and amounts to 0.30% per month
(3.57% per annum) for the market model, and 0.32% per month (3.82% per annum) for the
Carhart (1997) four-factor alpha.

Regressions (3) through (6) additionally control for the EDR risk factor of Chabi-Yo et

al. (2018), the Bali et al. (2011) factor for lottery-type stocks, the Kelly and Jiang (2014)

23The formal definitions of all factors used are provided in Appendix D.
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tail risk factor, and the U.S. equity betting-against-beta factor from Frazzini and Pedersen
(2014), respectively. Again, the monthly (annual) alpha of the EDL risks portfolio remains
statistically significant at the 1% level in each case and ranges from 0.31% to 0.37% (3.74%
to 4.50%).

Panel B of Table 6 reports annualized alphas for additional alternative factor models. We
regress the EDL risks quintile difference portfolio on the factors from the Fama and French
(2015) five-factor model, the Novy-Marx (2013) and Hou et al. (2015) four-factor models,
as well as the Carhart (1997) four-factor model extended by the Fama and French short-
and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-
minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from
Hirshleifer and Jiang (2010), the Anthonisz and Putnins (2017) LPM liquidity risk factor,
the Wu (2017) liquidity tail risk factor, and the Stambaugh and Yuan (2017) mispricing
factor. The alpha of the strong minus weak EDL risky portfolio ranges from 3.14% p.a. to
4.46% p.a. and is always statistically significant at the 1% level.

We also examine risk-adjusted monthly returns for the EDL risks quintile difference port-

folio and report the results in Table 7.
[Insert Table 7 about here]

In the same way as for EDL risky, we find that none of the tested asset pricing factors can
substantially reduce the alpha of the EDL risks quintile difference portfolio. Dependent on
the respective model, we report monthly (annual) alphas between 0.16% to 0.27% (1.86%
to 3.25%) with t-statistics ranging from 2.13 to 3.26 in Panel A and annual alphas between
1.94% to 3.21% with t-statistics ranging from 2.10 to 3.27 in Panel B.*

Our results reveal that the premiums for EDL risks and EDL risks are robust to controlling
for a wide array of alternative factor specifications. However, Daniel and Titman (1997)

advocate considering not just factor sensitivities in the analysis of determinants of cross-

24 A1l of our results are also stable when we use the equal-weighted CRSP market return instead of the
value-weighted CRSP market return in the factor model regressions. Results of these tests are reported in
Table C.4 of the Appendix.
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sectional stock returns. Thus, to also account for firm specific characteristics in our asset

pricing tests, we now proceed to run Fama and MacBeth (1973) regressions on the firm level.

3.4 Fama-MacBeth Regressions

In our basic setting, we perform individual Fama and MacBeth (1973) regressions of excess
stock returns over the risk-free rate in month ¢ + 1 on risk and firm characteristics measured
at month ¢ in the period from 1969 to 2012. Running Fama and MacBeth (1973) regressions
on the individual firm level can lead to less precisely estimated risk factors in comparison
to using portfolios as test assets. However, Ang et al. (2019) show that forming portfolios
does not necessarily lead to smaller standard errors of cross-sectional coefficient estimates.
Creating portfolios degrades information by shrinking the dispersion of risk factors and leads
to larger standard errors. Moreover, regressions on the individual stock level avoid biasing
the results in favour of (or against) a particular model as a result of the arbitrary but
necessary choice of sorting variables in the portfolio formation (see Anthonisz and Putnins,
2017).%5 Table 8 presents the regression results of future monthly excess returns on the EDL

risks and various combinations of control variables.
[Insert Table 8 about here]

In regression (1), we include EDL risk;, EDL risks, and EDL risks as the only explanatory
variables. Consistent with our results from portfolio sorts and multivariate factor models,
EDL risky and EDL risks show highly statistically as well as economically positive impacts,
while EDL risk; is not significant here (or in any of the following specifications): For example,
stocks with top quintile EDL risky (EDL risks) earn higher future returns of 3.08% per annum

(2.11% per annum) as compared to bottom quintile EDL risky (EDL risks) stocks.?

ZMoreover, Lewellen et al. (2010) show that the use of 25 Fama and French (1993) size-B/M sorted
portfolios gives a low hurdle in asset pricing tests because of the strong factor structure created in the
construction of the portfolios.

26Top (bottom) quintile EDL risks stocks have an average EDL risky exposure of 0.17 (0.00). Hence, our
regressions results indicate an annual return spread of 0.0151 - 0.17 - 12 = 3.08%. Top (bottom) quintile
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In regression (2), we add a stock’s market return beta (Sg), size, book-to-market ratio, and
its past yearly return to our model. EDL risk, and EDL risks remain statistically significant
at the 1% level when including these additional variables.

Regression (3) expands our model and includes a stock’s linear liquidity risk (5z) from
Acharya and Pedersen (2005), extreme downside return (EDR) risk (Chabi-Yo et al., 2018),
the illiquidity level (Amihud, 2002), exposure to tail risk (Srq:) from Kelly and Jiang (2014),
idiosyncratic volatility (Ang et al., 2006b), and a stock’s coskewness with the market (Harvey
and Siddique, 2000). We find that the inclusion of these additional variables only slightly
reduces the impact of EDL risk, and does not reduce the impact of EDL risks on future
returns. Both main variables remain statistically significant at the 1% level.

In regression (4), we replace Br by B and Bj; as well as 8, by 3; and 3} . Except
from (3, , none of these variables shows any significant impact on returns. In contrast, our
main result regarding the impact of EDL risks and EDL risks on future returns remains
unchanged — EDL risk, and EDL risks are statistically significant at the 1% level and have
an economically significant positive impact. Top quintile EDL risks (EDL risks) stocks earn
higher future returns by about 2.10% per annum (2.15% per annum) than bottom quintile
EDL risky (EDL risks) stocks, controlling for the full set of additional variables.

The coefficient estimates for the impact of the control variables broadly confirm findings
from the existing literature: Firm size (book-to-market) is shown to have a negative (positive)
impact on expected returns (e.g., Banz, 1981; Basu, 1983; and Fama and French, 1993), while
stocks that realize the best (worst) returns over the past 3 to 12 months are found to continue
to perform well (poorly) over the subsequent 3 to 12 months (e.g., Jegadeesh and Titman,
1993). EDR risk is positively related to future average returns (Chabi-Yo et al., 2018),
whereas idio vola shows a negative impact (e.g., Ang et al., 2006b), while the Acharya and
Pedersen (2005) /1, looses is not significance.

In regressions (5), (6), and (7), we add a stock’s liquidity tail risk sensitivity (see Wu, 2017),

EDL risks stocks have an average EDL risks exposure of 0.16 (0.00). Hence, our regressions results indicate
an annual return spread of 0.0110-0.16 - 12 = 2.11%.
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the LPM return, LPM liquidity risk, as well as the LPM liquidity risks (see Anthonisz and
Putnins, 2017, and Appendix D) to our model. Although some of these variables seem to
be similar to the concept of EDL risk (see our discussion above), we empirically find that
inclusion of these variables does not diminish the impact of EDL risk, and EDL risks on
future average stock returns. Both main variables remain statistically significant at the 1%
level and economically meaningful in size, confirming that EDL risk a different dimension of
extreme liquidity risk than these measures. Our empirical findings also confirm the results of
Anthonisz and Putnins (2017) who observe a positive and statistically significant premium
for LPM3 liquidity risk. Based on economic significance, top quintile LPMj3 liquidity risk
stocks earn higher future returns of 3.21% per annum, controlling for the full set of additional
variables. Thus, the economic magnitude is slightly larger than the impact for EDL risksy
and EDL risks (with corresponding numbers of 2.10% and 2.15% per annum).?”

We find no evidence for the Anthonisz and Putnins LPM liquidity risk 2 being priced, while
EDL risks is significant, which suggests that only co-occurences of extreme stock returns and
market illiquidty have a pricing impact.

Finally, in regression (7), we use a stock’s 6-month ahead excess return, to be fully con-
sistent with the (non-standard) specification used in Anthonisz and Putnins (2017) (instead
of the 1-month ahead excess return) as our dependent variable. We find that the impact of
EDL risky and EDL risks does not disappear and both variables remain to be priced at the
5% significance level (in the case of EDL risky) and the 10% significance level (in the case
of EDL risks). In this setting we can also confirm the significant pricing impact of a stock’s
illiquidity level (illiq) following Amihud (2002), while it is not significantly priced based on

our standard 1-month holding horizon.

2TWe investigate the relationship between the components of EDL risk and the components of LPM
liquidity risk in a multivariate setup more detailed in Table C.5 of the Appendix. Specifically, we compare
the impact of the components of LPM liquidity risk on future returns when including / excluding the
components of EDL risk. Our results reveal that EDL risks and EDL risks as well as LPMj3 liquidity risk are
all individually priced in the cross-section of expected stock returns. Moreover, the inclusion of EDL risks
and EDL risks in a multivariate regression does not affect the magnitude of the pricing impact of LPMjy
liquidity risk (and vice versa).
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In summary, we provide strong evidence that EDL risky, and EDL risks are priced in the
cross-section of expected stock returns. The premiums for EDL risks and EDL risks are
robust to various portfolio double sorts, hold for various asset pricing factor models, and

remain signficant when controlling for a wide list of firm characteristics.

3.5 Temporal Differences in the EDL Risk Premium

We now investigate whether the premiums for EDL risks and EDL risks are stable over
time. We first reproduce the results of the univariate portfolio sorts for the time period from
January 1969 through December 1987 and from January 1988 through December 2012. As a
cutoff for our sample, we select 1987, the year of Black Monday, when the U.S. stock market
had its largest one-day percentage decline in history. Focusing on this event is motivated by
studies from the empirical option pricing literature (e.g., Rubinstein, 1994, and Bates, 2008)
which document that premiums for deep-out-of-the-money put options strongly increased
after 1987, possibly due to investors becoming more crash-averse. Thus, our conjecture is
that this increased crash aversion might also have led to a higher premiums for EDL risk,
and EDL risks in the cross-section of stock returns after 1987. Panel A of Table 9 reports
the monthly excess portfolio returns and alphas of portfolios sorted by EDL risk,. We also
report differences in quintile portfolio spreads between the time periods from January 1988

through December 2012 and January 1969 through December 1987.
[Insert Table 9 about here]

The EDL risky premium between the two subperiods varies considerably. In the first
subsample from 1969 through 1987, we only find very weak indications of a positive EDL risks
impact. The return spread between the strong EDL risks and the weak EDL risky portfolio
is 0.07% per month and is not statistically significant at conventional levels. The results for
the liquidity-risk augmented Carhart (1997) alphas are similar: The alpha spreads amount

to 0.08% and 0.10% per month and are not statistically significant from zero.
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In the post-crash period from 1988 through 2012, the premium for EDL risk, strongly
increases. Stocks in the quintile with the highest (lowest) EDL risks earn an monthly average
excess return of 0.98% (0.43%). Hence, the monthly return spread between quintile portfolios
5 and 1 is 0.54% and statistically significant at the 1% level. We also find that this premium
remains robust when we adjust raw returns for exposures to our usual risk factor models. The
monthly spread with regard to the Carhart (1997) four factor model extended by the Pastor
and Stambaugh (2003) traded liquidity factor is 0.50% (t-statistic of 3.99) and the monthly
spread with regard to the Carhart (1997) four factor model extended by the Sadka (2006)
fixed-transitory and variable-permanent liquidity factors is 0.48% (t-statistic of 3.99). We
also observe that the difference in the quintile portfolio return and alpha spreads between the
time periods from January 1988 through December 2012 and January 1969 through December
1987 are economically large and statistically significant at least at the 5% significance level.

Panel B of Table 9 repeats the temporal variation analysis for EDL risks. We obtain
results that are conceptionally similar but economically and statistically weaker than for
EDL risks. Specifically, we document that EDL risks has a systematic impact in the latter
sample period, but not prior to 1988. The difference in the quintile portfolio return spread
between the time periods from January 1988 through December 2012 and January 1969
through December 1987 increases by 0.26% (t-statistic of 1.73). The differences in the
quintile portfolio alpha spreads amount to 0.14% and 0.15%, but do not show statistical
significance at conventional levels.

Panel C of Table 9 reports the regression results from specification (3) of Table 8 separately
for the two subperiods. Our results reveal — in line with the findings of the portfolio sorts
— that the point estimate for the impact of EDL risks has more than doubled from the first
to the second subperiod in our sample period (from an insignificant 0.0051 to a strongly
significant 0.0128). We also observe that the point estimate of EDL risks is rather stable
through both periods with significant values of 0.099 (between 1969 to 1987) and 0.0106

(between 1988 to 2012).
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Figure 2 shows the temporal variation of the cumulative alpha based on the Carhart (1997)
four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor of the
top EDL risky (EDL risk;, EDL risks) minus the bottom EDL risks (EDL risky, EDL risks)

portfolio during the whole sample from January 1969 through December 2012.2
[Insert Figure 2 about here]

The graph reveals that most of the premium for EDL risks can be attributed to the second
half of our sample period (i.e., the time period from January 1988 through December 2012).
The strongest premium is realized in the years following 1987 and 2009, respectively, i.e.
after the Black Friday stock market crash in 1987 and the financial crisis in 2008. We
conjecture that these market crashes have strongly increased the crash aversion of investors,
which subsequently has increased the premium (discount) for strong (weak) EDL risks and
EDL risks stocks. Again, this finding is in line with the results of the empirical option
literature mentioned above, which indicates increasing prices (and low expected returns) for
securities that offer protection against strong market downturns after 1987, as well as with
findings in Chabi-Yo et al. (2018) showing that extreme downside return risk premia also

significantly increased after crisis periods.

4 Robustness Checks

4.1 Liquidity Proxies

The empirical analysis in Section 3 is performed using EDL risk estimates of liquidity in-
novations based on the Amihud (2002) Illiquidity Ratio, analogous to Acharya and Pedersen
(2005). One potential concern is that our main findings are driven by the measurement error
component of our proxy for liquidity. Attenuation bias caused by this measurement error

would lead to an underestimation of the return premium for EDL risks. Nevertheless, to

28When computing the cumulative alphas for the top EDL risk - bottom EDL risks portfolio, no trading
costs are taken into account.
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assure the stability of our findings, we now test whether our results regarding the impact
of EDL risky and EDL risks on future returns are robust to using different (low-frequency
and high-frequency) proxies of liquidity. As additional low-frequency liquidity proxies we
use the Corwin and Schultz (2012) measure (Corwin), the Lesmond et al. (1999) measure
(Zeros), and the Fong et al. (2017) measure (FHT).?® As high-frequency liquidity proxies
we select the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud
measure (IntAmi), and the 5-minute price impact measure (Prilmp). The high-frequency
liquidity proxies are calculated for common stocks traded on the NYSE/AMEX using the
TAQ dataset in the period between January 1, 1996 and December 31, 2010. The advantage
of these proxies is their lower measurement error, but they are only available to us for a rel-
atively short period of time, making it very challenging to conduct meaningful asset pricing
tests. We perform asset pricing tests for the high-frequency proxies in the time period from
2002 to 2010. Average time-series correlations between the high-frequency and low-frequency
proxies are shown in Table A.1 in the Appendix. We find that the highest correlations exist
between IntAmi and Prilmp (value of 0.79), EffSpr and Prilmp (value of 0.75), and Zeros
and FHT (value of 0.70).%°

In the same way as for the Amihud (2002) Illiquidity Ratio, we estimate liquidity shocks,
and subsequently the EDL risks, for each firm ¢ in each week ¢ based on weekly returns
and liquidity shocks over 3-year rolling windows. To investigate whether EDL risk, and
EDL risks are priced factors in the cross-section of expected stock returns if measured based
on other liquidity proxies, we perform portfolio sorts, factor regressions and multivariate
Fama and MacBeth (1973) regressions similar to the ones from the previous section. Table

10 reports the results.

[Insert Table 10 about here]

29Detailed definitions of these variables, as well as data requirements, are given in Appendix A.

30We compute illiquidity shocks for each stock based on a 3-year time horizon starting in January 1996.
We then use the time period from 1999 to 2001 to estimate the first EDL risk coefficients for each stock.
Thus, our asset pricing tests using high frequency proxies only start in January 2002.
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Consistent with our previous results, Panel A shows that EDL risks is significantly priced
across all low-frequency measures in our study. The monthly (annualized) return and alpha
spreads between quintile portfolios 1 and 5 range from 0.15% (1.80%) for the Zeros measure
up to 0.33% (3.96%) for the Corwin measure. We obtain slighly weaker results for the pricing
effect of EDL risky across the low-frequency measures. Nevertheless it shows a significant
effect for the Corwin and the FHT measure.

Moreover, we find at least indicative evidence for the pricing of EDL risky and EDL risks
when investigating portfolio sorts for the high-frequency liquidity measures. All EDL risksy
and EDL risks raw and risk-adjusted return spreads are positive. In addition, we find a
statistically significant impact of EDL risky on future returns for EffSpr and Prilmp, as well
as a statistically significant impact of EDL risks for EffSpr, RelSpr, IntAmi, and Prilmp.
This is a remarkable result given that our sample period for our asset pricing tests is only 9
years, which generally makes it very hard to detect any significant asset pricing patterns.

To confirm that our results are not driven by correlations with other explanatory variables,
we repeat regression (3) of Table 8 for the EDL risks based on the alternative liquidity
proxies. Our findings in Panel B indicate that the effect of EDL risk, and EDL risks is
stable across the different liquidity proxies and not driven by measurement error. All EDL
risk coefficients are positive. Except for the Zeros measure, we always find a statistically and
economically significant impact of EDL risks and/or EDL risks across the different liquidity

proxies, indicating a quite robust impact of these EDL risks on future returns.

4.2 Estimation Procedures and Weighting Scheme

The estimation procedure of the EDL risk coeffcients in Section 3 is performed using an
estimation horizon of 3 years of weekly returns and AR(4) liquidity-shocks, and a copula
function that shows the best fit for each combination of firm, week and EDL risk component
in the estimation window. Furthermore, portfolio sorts are conducted on an equally weighted

basis. Thus, one concern might be that our results are specific to the details of this procedure.
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To address concerns of overfitting, we now demonstrate the robustness of our results to
several changes in the estimation procedure: First, we apply different estimation horizons
of 1 year (EDL risk,,), 2 years (EDL risky,), and 5 years (EDL risks,) for the estimation of
EDL risk using weekly returns. Second, we use simple differences in stock liquidity instead of
shocks from an AR(4) model (diff). This robustness test alleviates concerns that errors due to
the estimation of the AR(4)-parameters drive results. Third, we use different copula functions
in the estimation procedure of the EDL risks. In particular, we test the robustness of our
results with copulas that performed best (EDL riskeq ), second-best (EDL riskes), second-
worst (EDL riskcgs) and worst (EDL riskegs) for this stock-week, as well as a copula that is
a likelihood-weighted average of all 64 copulas we consider (EDL riskey, ). The robustness of
our results to these variations should show that they are not caused by estimation error and
overfitting through selecting particular estimation horizons, liquidity-shock estimates, and
copula functions.

To examine whether EDL risks and EDL risks are priced when the estimation procedure
is varied, we again perform portfolio sorts, factor model regressions and multivariate Fama

and MacBeth (1973) regressions. Results are reported in Table 11.
[Insert Table 11 about here]

Panel A shows that, in univariate equal-weighted portfolio sorts and based on our bench-
mark factor models, EDL risky, and EDL risks are significantly priced across specifications
with alternative estimation horizons, different copulas, and when we use simple differences in
stock liquidity instead of shocks from an AR(4) model. The monthly (annualized) EDL risky
spread in excess returns and alphas between quintile portfolios 5 and 1 ranges from 0.12%
(1.44%) to 0.47% (5.64%) and is always significant at the 10% level. The monthly (annual-
ized) EDL risks spread in excess returns and alphas between quintile portfolios 1 and 5 ranges
from 0.16% (1.92%) to 0.39% (4.68%). We also observe that return and alpha spreads remain
positive and are statistically significant at least at the 5%-level across different estimation

procedures.
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In Panel B, we repeat regression (3) of Table 8 of future returns on the EDL risks (es-
timated using different horizons, liquidity differences and different copula functions) and
other explanatory variables. Our results reveal that the positive, statistically significant
impact of EDL risky and EDL risks on future returns is stable across different estimation
procedures even when controlling for a wide array of firm and risk characteristics. Overall,
our robustness tests show that our main findings are not driven by overfitting or estimation
€rrors.

Our previous portfolio sorts in Section 3 were performed based on equal-weighted port-
folios. Thus, even though we exclude < $2- and NASDAQ-stocks, our results could be
influenced by overweighting the importance of very small stocks. Thus, we also examine

value-weighted portfolio sorts in Table 12.

[Insert Table 12 about here]

Panel A reports the results of value-weighted univariate portfolio sorts based on EDL risk,
and EDL risks. Based on raw returns, we find that stocks with strong EDL risk, (EDL risks)
earn significantly higher average future returns than stocks with weak EDL risky (EDL risks).
The return spread between quintile portfolio 5 and 1 is 0.21% (0.14%) and statistically
significant at the 10% level. However, when we risk-adjust the returns using the Carhart
(1997) four-factor model augmented by the Pastor and Stambaugh (2003) traded liquidity
factor and the Sadka (2006) fixed-transitory and variable-permanent liquidity factors, we
observe that the spreads are shrinking and are statistically indifferent from zero. Hence,
giving disproportionate weight to very large stocks in portfolio sorts reduces the impact of

EDL risky and EDL risk; on the cross-section of expected stock returns.®!

31We argue that using equal-weighted portfolio sorts in asset pricing tests is the more natural methodology
for our research question. First, our paper deals with asset pricing under extreme illiquidity. As already
documented in the literature, very large stocks tend to be very liquid, so that a value-weighting scheme
strongly over-weights stocks for which liquidity is less of a concern and the concept of EDL risk is eventually
not really relevant. As an illustration, in our sample the firms in the largest size quintile make up 84.26%
of the total market capitalization of all firms in an average cross-section. Thus, value-weighted sorts are
driven predominantly by the very largest firms, for which illiquidity concerns are negligible. Second, Hou et
al. (2018) show that the vast majority of 452 asset pricing patterns become insignificant when overweighting
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To check which stocks are responsible for the shrinking alpha spread, we also conduct
univariate value-weighted portfolio sorts where we exclude the top 5% (top 10%, top 20%)
largest firms of our sample in each month ¢. We show that — in all specifications — the return
and alpha spreads based on EDL risks and EDL risks between quintile portfolio 5 and 1
are economically large and statistically signficant at least at the 10% significance level as
soon as we exclude the very largest stocks that otherwise dominate value-weighted returns.
As an example, when excluding the top 5% largest stocks per month, the value-weighted
portfolio of strong EDL risky (EDL risks) stocks has higher risk-adjusted returns than the
value-weighted portfolio of weak EDL risky (EDL risks) stocks between 0.21% (0.26%) per
month with t-statistics ranging from 1.88 to 3.01. Hence, the premium for EDL risky, and
EDL risks is strong for all stocks except the very largest.

We finally examine whether the significant value-weighted return spread of the quintile
difference portfolio based on EDL risk, and EDL risks is also robust to the inclusion of
other factors proposed in the literatur. For this purpose, we regress the return spread on
the risk factors also used in Panel A of Table 6 and Table 7. We observe that none of the
factors can substantially shrink the alpha of the EDL risky and EDL risks quintile difference
portfolio (when having excluded the top 5% of the largest firms). Dependent on the respective
model, we report monthly (annual) alphas between 0.26% to 0.31% (3.13% to 3.71%) with
t-statistics ranging from 2.93 to 3.68 for EDL risks in Panel B and monthly (annual) alphas
between 0.20% to 0.32% (2.36% to 3.80%) with t-statistics ranging from 2.44 to 3.52 for
EDL risks in Panel C.

large stocks, in particular for liquidity-related return premiums. We interpret their findings as evidence
that any analysis of liquidity-related phenomena must give sufficient weight to illiquid (typically small firm)
stocks, which are actually affected by these phenomena, to provide any insight. Thus, in order to gauge the
importance of EDL risks and EDL risks, we rely on an equal-weighted approach in the main part of our
empirical analysis, giving a large-enough weight to illiquid stocks to make the effects of extreme illiquidity
visible.
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4.3 Regression Methods and Adjusted Returns

Our multivariate regression results in Section 3.4 rely on Fama and MacBeth (1973) re-
gressions with winsorized variables. We now vary the regression approach, using the full
set of independent variables for the complete sample period from 1969 to 2012. Results are

presented in Panel A of Table 13.
[Insert Table 13 about here]

Regression (1) varies the baseline regression (5) from Table 8 by not using Newey-West
standard errors in the second stage of the Fama and MacBeth (1973) regressions to determine
statistical significance. Regression (2) uses the standard Fama and MacBeth (1973) approach
without winsorizing the independent variables. In regression (3) we conduct a pooled OLS
regression with time-fixed effects and standard errors clustered by stock. Regression (4)
is a variation of (3), where we cluster standard errors by industry using the SIC-2-digits
classification.?? Regressions (5) and (6) use panel data regressions with firm-fixed effects. In
regression (6) standard errors are additionally clustered by firm. Finally, in regression (7)
we regress excess returns on the independent variables in a random-effect panel regression.
In all regression modifications, we document that EDL risky and EDL risks are important
explanatory factors and always statistically significant at the 1% level.

So far, we have used monthly excess returns in month ¢ + 1 as our dependent variable in
the asset pricing exercises. We now test the robustness of our results if we use different lags,
namely monthly returns in ¢ + 2, t + 3, and ¢t + 4 as our dependent variable. Results in
Panel B of Table 13 document a stable and statistically significant impact of EDL risks and
EDL risks on future returns across the different lags and return horizons which decrease the
longer the lag between the estimation and evaluation period becomes.

Next, we adjust the return of each stock by subtracting the return of its corresponding

Daniel et al. (1997) characteristic-based benchmark (DGTW). Again, our main result of

32Results are virtually unchanged whether we cluster by Fama-French 48 or SIC industries.
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significant premiums for EDL risk, and EDL risk; remains unaffected.

Finally, some extreme market downturns might be driven by specific industries. To inves-
tigate whether this is the case, we repeat our multivariate regressions with the full set of
controls (i.e., regression (3) from Table 8), using industry-adjusted returns instead of raw
returns as the dependent variable. To identify and cluster by industries, we use the SIC-2,
SIC-3, the SIC-4 digit industry classification, as well as the Fama-French 12 (FF12) and 48
(FF48) industry classifications with monthly returns. For all classifications, the coefficient

for EDL risky and EDL risks remains positive and statistically significant.

5 Conclusion

This study investigates whether investors receive compensation for holding stocks with high
extreme downside liquidity (EDL) risks, i.e., stocks that display (i) clustering in the lower
left tail of the bivariate distribution between individual stock liquidity and market liquidity
(EDL risk; ), (ii) clustering in the lower left tail of the bivariate distribution between the
individual stock return and market liquidity (EDL risks), and (iii) clustering in the lower
left tail of the bivariate distribution between individual stock liquidity and the market return
(EDL risks). We hypothesize that such stocks are unattractive assets to hold for crash-averse
investors leading them to demand a premium for holding high EDL risk stocks.

Our empirical analysis provides clear evidence to support this hypothesis: The cross-
section of expected stock returns reflects a premium for EDL risks and EDL risks, but not
EDL risk;. Stocks that are characterized by high EDL risk, (EDL risks) earn significantly
higher future returns than stocks with low EDL risky (EDL risks). The high future returns
earned by stocks with high EDL risks (EDL risks) can be explained neither by linear liquidity
risk (as in Acharya and Pedersen, 2005), LPM liquidity risk (as in Anthonisz and Putnins,
2017) nor by different factor model specifications and are not due to differences in firm

characteristics. Our results are stable across different liquidity measures and alternative
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estimation procedures for the EDL risks.

Overall our results have important implications for portfolio performance management
and financial stability: There is evidence that certain investor groups seek (and can identify)
stocks with strong tail risk exposure. For example, Agarwal et al. (2017) show that hedge
fund managers actively invest in such stocks and are able to earn the associated premium.
If financial institutions do not suffer the (unmitigated) consequences of a market crash or
liquidity crisis (e.g., because they expect to be bailed out), they are incentivized to buy
strong EDL risk, and EDL risks assets in order to earn the premium documented in our
study. Such behavior would make those institutions, and consequently financial markets,

more fragile.
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Appendix: Liquidity Measures

Appendix A provides the definitions of the eight liquidity proxies used in this study, along

with data requirements, details about the computation of liquidity shocks and a short analysis

of how well EDL risk estimates based on low-frequency proxies correlate with high-frequency

benchmark values.

Al

Liquidity Proxy Definitions and Data Requirements

The low-frequency data for proxies (1)-(4) comes from CRSP. The high-frequency proxies
(5)-(8) use data from the NYSE TAQ database.

(1)

The Amihud (2002) Illiquidity Ratio (illiq) is defined as in Acharya and Pedersen
(2005):

¢t = min(0.25 + 0.30 - illig} - P",,30)% (12)
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where 7!, and V}, are respectively the return and dollar volume (in millions) on day d in
week ¢ and days! is the number of valid (available return and non-zero dollar-volume)
observations in week ¢ for stock i. ¢! can be interpreted as the effective half-spread of

stock 1.

The Corwin and Schultz (2012) illiquidity measure (Corwin) is defined as follows:

] days, 2. o 3
. . td —
= —— Z max ei—,() (13)
days; —1 “= e + 1
with
o, — 2- Bl =B Vid
e 3-2-4/2 3-2-12
, 2 . 2
A hii hil,
T — l ‘a l ‘7
e (i (52)) (o (5
Z. tdhii \\°
T = 109 G
t,d

39



where hij ; and lo} ; stand for high- and low-prices on day d in week ¢ for stock i,
tdhi} 4 and tdloj ; stand for 2-day high- and low-prices on days d — 1 and d in week ¢
for stock i and days! is the number of days for which high-, low- and closing prices are
available. We use the same adjustments for strong overnight price changes and thinly
traded stocks as Corwin and Schultz (2012). ¢! can be interpreted as the spread of

stock 1.

The Lesmond et al. (1999) illiquidity measure (Zeros) is defined as:

Ci - l‘tdi (14)
days;

where 7!, is the number of zero-return days and days! is the number of available daily

returns in week ¢ for stock 7.

The Fong et al. (2017) illiquidity measure (FHT) is defined as follows:

) . 1+7 2
¢ 9. g0 N1 <¥> (15)

with

Zeros2 = —

where z¢ is the number of zero-return days for week ¢, o} is the standard-deviation of
daily returns in week ¢, and N~! (-) is the inverse of the standard normal cdf. ¢} can

be interpreted as the spread of stock 1.

The relative spread (RelSpr) is defined as:

days, N,

¢ = > v LS RS, (16)
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with . .
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A
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where Al, B, and Qi, =
and quote midpoint price in transactlon n of day d in week t. dayst is the number
of days with available transactions of stock i in week ¢ and N/, is the number of
transactions of stock ¢ on day d in week t. The prevailing bid- and ask-quotes are the

latest available quotes up to at least one second before the trade.
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(6) The effective spread (EffSpr) is defined as follows:

days, N,
¢ = ES! " (17)
with . ;
EStZdn _ 2. |Ptdn - Qtdnl

Q
tdn
where all variables are defined as above and P}, is the transaction price of transaction

n of day d in week t.

(7) The 5-minute price impact (Prilmp) is defined as follows:

) days,
ch = - Pﬁdn (18)
with ; ;
PrI i = 2- |Qtdn5 — Qtdn|

Qidn
where all variables are defined as above and Q- is the quote midpoint 300 seconds

after transaction n of day d in week t.

(8) The intraday Amihud measure (IntAmsi) is defined as follows:

days, N,

¢l = 1 : Z NZdZMtd“ (19)
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where all variables are defined as above and w!,, is the transaction volume (in shares)

of transaction n of day d in week ¢.

For all liquidity proxies, a missing value is recorded if there are less than three daily

observations for week ¢ and stock i, i.e., days! < 3.3

33We make an exception for the week of September 11t* 2001, when just one trading day occurred on
NYSE/AMEX. For this week the minimum number of observations is lowered to 1.
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A.2 Computation of Illiquidity Shocks and Analysis of EDL Risk

Estimates For Different Proxies

As explained in the main text, we use di = —c!, i.e., liquidity (shocks) instead of illig-
uidity (shocks) for the estimation of EDL risks (see Appendix B) in order to facilitate the
interpretation of our extreme downside liquidity risks. As d! is highly persistent for most
of the stocks in our sample, we estimate liquidity shocks based on the difference between
the normalized realized liquidity value di and the expected normalized liquidity F; ;(d!) for
each stock ¢ and week t. Expected normalized liquidity F; (d!) is computed via an AR -
time series model.

In order to deal with possible time-variation of parameters and to keep estimates fully out-
of-sample, the estimation is run on a 3-year rolling window basis. The choice of a persistent
but mean-reverting process seems natural for liquidity. Statistical tests — based on non-
overlapping 3-year periods between 1963 and 20113* — generally support this choice. First,
the null-hypothesis of 'no autocorrelation at the first lag’ is rejected by Ljung-Box tests at a
10% significance level for most stocks (e.g., 92% of stocks for the Amihud Illiquidity Ratio).
Second, Augmented Dickey-Fuller tests — with four lagged difference terms, with drift and
without time-trend — reject the null-hypothesis of 'unit root present’ at a 10% significance
level for most stocks (e.g., 78% of stocks for the Amihud Illiquidity Ratio). Additionally,
the partial autocorrelation function becomes insignificant at the fourth lag or less for most
stocks (e.g., 86% of stocks for the Amihud Illiquidity Ratio). These results generalize to
most proxies. Thus, it seems reasonable to use an AR(4)-model to estimate E; 1(d}), as
given in Equation (5).

Table A.1 displays average time-series correlations between proxy-levels for the sample pe-
riod from 1996 to 2010. As expected, all low-frequency proxies are positively correlated with
high-frequency benchmarks. We observe that illiq and Corwin dislay the highest pairwise

correlations with the high-frequency proxies.

34The results are qualitatively the same, if the model-selection is done for just 1963-1968, so that the
EDL risk-estimates can still be interpreted as fully out-of-sample.
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Table A.1: Average Time-Series Correlations between Liquidity Proxy Levels

High-Frequency Proxies Low-Frequency Proxies
EffSpr  RelSpr IntAmi Prilmp illiq  Corwin Zeros FHT

BffSpr | 1.00 1
RelSpr 0.41 1.00 :
|
|

IntAmi | 0.58 0.35 1.00

Corwin | 0.12 0.20 0.19 0.11 1 0.16 1.00
Zeros 0.04 0.06 0.02 0.01 ' -0.03 -0.03 1.00
FHT 0.11 0.14 0.09 0.07 1+ 0.09 0.07 0.70  1.00

This table displays correlations between liquidity levels based on the different liquidity proxies used in this
study. A detailed description of the computation of the proxy-levels and shocks is given above in Appendix
A. The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for proxy
levels is from January 1996 to December 2010.
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Table A.2: Persistence of EDL Risk

B 2) 3) () 5) (6)
EDL risk; EDL risky EDL risk, EDL risky EDL risks EDL risks
EDL risk; 0.0303***  0.0220***
(4.25) (4.24)
EDL risks 0.0147***  0.0092***
(3.49) (2.88)
EDL risks; 0.0428***  0.0197***
(5.64) (4.29)
Br 0.0060** 0.0021 0.0071***
(2.13) (0.71) (2.94)
size 0.0039*** 0.0015 0.0060
(3.15) (1.54) (1.48)
btm 0.0024* 0.0014 0.0024*
(1.77) (1.08) (1.69)
past return -0.0038 -0.0006 0.0007
(-1.45) (-0.30) (0.23)
OL -0.0063 -0.0068 0.0044
(-0.99) (-1.22) (1.18)
EDR risk 0.0070 0.0057** -0.0093**
(1.52) (2.08) (-2.50)
illiq -0.0106 0.0157 0.0997**
(-0.96) (1.04) (2.37)
Brail 0.0080 0.0090 0.0045
(0.54) (1.23) (0.43)
idio vola -0.1009 -0.0213 -0.1284
(-1.18) (-0.26) (-1.56)
coskew 0.0016 0.0029 -0.0053
(0.37) (0.90) (-1.50)
const 0.0919*** 0.0078 0.0666*** 0.0346* 0.0728*** -0.0468
(17.12) (0.32) (9.17) (1.92) (13.14) (-1.44)
Avg. R? 0.0039 0.0626 0.0031 0.0474 0.0065 0.0704

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results
of regressions of weekly EDL risk;, EDL risks, and EDL risks estimated based on weeks t + 1 to t + 156
on EDL risk;, EDL risks, and EDL risks estimated based on weeks ¢t — 155 to t, Bgr, the log of market
capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return),
Br, EDR risk, illiquidity (illiq), Braqy from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), and
coskewness (coskew). All risk and firm characteristics are calculated using data available at (the end of ) week
t. A detailed description of the computation of these variables is given in the main text and in Appendix
D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from

ok Kk

January 1969 to December 2012. t-statistics are in parentheses. , ™, and * indicate significance at the

one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with 156 lags.
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B Appendix: Estimating Tail Dependence Coefficients

Appendix B provides the technical details of the copula estimation and selection procedure
and the calculation of the respective tail dependence coefficients. The estimation procedure
follows the approach of Chabi-Yo et al. (2018).

B.1 The Estimation Procedure

Bivariate extreme value distributions (such as in this paper) cannot be characterized by
a fully parametric model in general, which leads to more complicated estimation techniques
(see Frahm et al., 2005). Our estimation approach relies on the entire set of weekly returns
ry and liquidity innovations /; of a firm ¢ and the market in a 3-year period.

Coefficients of tail dependence have closed-form solutions for several basic parametric
copulas (see Table B.1), but these basic copulas do not allow us to model upper and lower
tail dependence simultaneously. However, Tawn (1988) shows that every convex combination
of existing copula functions is again a copula. Thus, if C}(uq,uz), Co(uy, us), ..., Cp(uy, us)

are bivariate copula functions, then

C(Ul,UQ) = wq - Cl<U1,UQ) + wao - CQ(Ul,UQ) + ...+ Wy, - C’n(ul,u2)

is again a copula for w; > 0 and Y, w; = 1.

To allow for the maximum possible flexibility, we consider 64 possible convex combinations
of the afore mentioned basic copulas from Table B.1. Each combination consists of one
copula that allows for asymptotic dependence in the lower tail, C]p, one copula that is
asymptotically independent, CNTT), and one copula that allows for asymptotic dependence
in the upper tail, Cyp:

C(uy,uz,0) = wy - CLTD(Ul,UQ; t1)
+wy - CNTD(ul, Ug; 92) + (1 — w1 — wg) : CUTD(ul,UQ; 93),

where © denotes the set of the basic copula parameters 6;, ¢+ = 1,2, 3 and the weights w; and
Wa.

For the sake of convenience, we only outline the estimation approach of lower tail de-
pendence in the distribution of a stock’s liquidity and market liquidity (EDL risk;). The
estimation of the other EDL risks, namely EDL risky (stock return and market liquidity) as
well as EDL risks (stock liquidity and market return) follows analogously.

Starting with 1966-1968, we determine the copula convex combination that shows the
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best fit for the bivariate distribution of liquidity shocks for each stock and 3-year window.
First, based on weekly liquidity innovations, we estimate a set of copula parameters ©; for
j =1,...,64 different copulas Cj(-,;©;) between individual stock liquidity /i and market
liquidity ;" for each stock 7 based on a 3-year rolling window. Each of these convex combina-
tions requires the estimation of five parameters: one parameter 6; (i = 1,2, 3) for each of the
three basic copulas and two parameters for the weights w; and wy. The copula parameters
©, are estimated via the canonical maximum likelihood procedure of Genest et al. (1995).
The details of this step are described in Section B.2.

Second, for each stock ¢ and week ¢t we compare the estimated log-likelihood values of all
64 copulas C; and select the parametric copula C} (-, -; ©*) that has the highest log-likelihood
value. The result of this step is summarized in Table B.2 where we present the percentage
frequency by which each of the possible 64 combinations is chosen. Most frequently, copula
(1-D-1V) of Table B.1 is the best fit for the distribution for EDL risk; and copula (1-A-IV) is
the best fit for the distributions for EDL risk, as well as EDL risks. Copula (1-D-IV) relates
to the Clayton-FGM-Rotated Clayton-copula and copula (1-A-IV) relates to the Clayton-
Gauss-Rotated Clayton-copula.

Third, for each stock ¢ and week ¢, we compute the tail dependence coefficients Ay implied
by the estimated parameters ©* of the selected copula C*(-,-;©*). The computation of Aj,
is straightforward if the copula in question has a closed form, as all the basic copulas used in
this study do. Column (3) of Table B.1 displays the closed-form solutions to determine Aj,
for the respective copula. The lower tail dependence coefficient of the convex combination
is calculated using A5 = w7 - A(07). As this procedure is repeated for each stock and week,

we end up with a panel of tail dependence coefficients at the stock-week level.

B.2 Estimation of the Copula Parameters

The estimation of the set of copula parameters © for a copula C(-,-;0) is performed as
follows (see also Chabi-Yo et al., 2018):

Let {l; , lmx 7, be a random sample from the bivariate distribution

F(liyln) = C(Fy(L;), Fru(lm))

between individual stock liquidity /; and market liquidity [,,, where n denotes the number
of weekly return observations in a 3-year period. The marginal distributions F; and F,,
of individual stock liquidity /; and market liquidity [,, are estimated non-parametrically by

their scaled empirical distribution functions
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~ 1 n ~ 1 n

This non-parametric estimation approach avoids an incorrect specification of the marginal
distributions. We then estimate the set of copula parameters © parametrically. The param-

eters © are estimated via the maximum likelihood estimator
6 = argmaxe L(©) with L(©) = log(c(Fiy,,, Fini, i 05)), (21)
k=1
where L(O) denotes the log-likelihood function and ¢(-,-;©) the copula densitiy. O is a
consistent and asymptotic normal estimate of the set of copula parameters © under stan-

dard regularity conditions (e.g., Genest et al., 2005), assuming that {; x, Lk }7_; is an i.i.d.

random sample.
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C Appendix: Additional Asset Pricing Results

Table C.1: Extreme Upside Liquidity Risk: Summary Statistics and Univariate
Portfolio Sorts

Panel A: Summary Statistics

Standard 10%- 50%- 90%-
Mean Deviation  Percentile Median  Percentile

EUL risk; | 0.0211 0.0201 0.0000 0.0200 0.0462
EUL risks | 0.0212 0.0198 0.0000 0.0188 0.0429
EUL risks | 0.0274 0.0232 0.0000 0.0200 0.0600
EDL risk; | 0.0632 0.0770 0.0000 0.0351 0.1803
EDL riske | 0.0713 0.0779 0.0000 0.0461 0.1764
EDL risks 0.0543 0.0682 0.0000 0.0282 0.1557

Panel B: Univariate Portfolio Sorts

(1) (2) ®3)

Portfolio EUL risky EUL riske  EUL risks

1 Weak 1 0.61% 0.58% 0.66%

2 0.60% 0.66% 0.58%

3 0.64% 0.62% 0.63%

4 0.65% 0.61% 0.64%

5 Strong 5 0.69% 0.57% 0.68%
Strong - Weak 0.08% —0.01% 0.02%
Return (1.25) (-0.29) (0.32)
Strong-Weak 0.05% 0.01% 0.01%
Carhart + PS;41 (0.80) (0.21) (0.20)
Strong-Weak 0.06% 0.04% —0.02%
Carhart + Sadka;41 (0.83) (0.59) (-0.31)

Panel A of this table displays summary statistics for EUL risk;, EUL riska, EUL risks, EDL risk;, EDL risks, and EDL risks.
We report the mean, the standard deviation, the 10%-percentile, 50%-percentile (median), and 90%-percentile for each variable.
Panel B of this table reports equal-weighted average monthly ¢+ 1 excess returns for portfolios sorted by EUL risk;, EUL riska,
and EUL risks. Each month ¢ we rank stocks into quintiles (1-5) based on estimated EUL risk;, EUL riska, and EUL risks
over the past three years and form equal-weighted portfolios at the beginning of each monthly period. We report monthly
average returns in excess of the one-month T-Bill rate over the month ¢+ 1, alphas based on Carhart (1997)’s four factor model
extended by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-transitory and variable-
permanent liquidity factors. The row labelled ’Strong - Weak’ reports the difference between the returns and alphas of portfolio
5 and portfolio 1 with corresponding t-statistic. The sample covers all U.S. common stocks traded on the NYSE / AMEX and
the sample period is from January 1969 to December 2012. Alphas based on Carhart (1997)’s four factor model extended by
the Sadka (2006) fixed-transitory and variable-permanent liquidity factors range from April 1983 to December 2012. t-statistics

sokok Kok

are in parentheses. , and * indicate significance at the one, five, and ten percent level, respectively. We use Newey-West

(1987) standard errors with four lags.
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Table C.2: Fama and MacBeth (1973) Regressions:
Extreme Upside Liquidity Risks

Returngy1
EDLR; -0.0015
(-0.71)
EDLR3 0.0100***
(3.64)
EDLR3 0.0110***
(4.04)
EULR; -0.0003
(-0.13)
EULRg -0.0002
(-0.05)
EULR3 0.0076
(1.45)
Br 0.0004
(0.25)
size -0.0014***
(-4.63)
btm 0.0023***
(3.03)
past return  0.0104***
(5.65)
BL -0.0080
(-0.59)
EDR risk 0.0088***
(5.16)
illiq -0.0211
(-0.97)
Brail 0.0236
(1.45)
idio vola -0.0957***
(-2.76)
coskew -0.0002
(-0.12)
Avg. R? 0.0888

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions of
monthly excess returns over the risk-free rate at month t+1 on EDLR;, EDLR2, EDLR3, EULR;, EULRg, EULR3, B8R, the log
of market capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return), Sz, EDR
risk, illiquidity (illiq), Brqq from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), and coskewness (coskew). All risk
and firm characteristics are calculated using data available at (the end of) month ¢. A detailed description of the computation
of these variables is given in the main text and in Appendix D. The sample covers all U.S. common stocks traded on the NYSE
/ AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses. ***, ** and * indicate

significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table C.3: Reversed Bivariate Equal-Weighted Portfolio Sorts

Panel A: EDL risky (first sort) and LPM liquidity risk, (second sort)

Portfolio 1 Weak EDLR»> 2 3 4 5 Strong EDLR2  Average
1 Weak LPMLR2 0.36% 0.40% 0.50% 0.53% 0.61% 0.48%
2 0.50% 0.63% 0.63% 0.78% 0.77% 0.66%
3 0.60% 0.70% 0.65% 0.78% 0.78% 0.70%
4 0.44% 0.66% 0.78% 0.68% 0.87% 0.69%
5 Strong LPMLR2 0.31% 0.49% 0.52% 0.74% 0.87% 0.59%
Strong-Weak —0.05% 0.10% 0.02% 0.22% 0.26% 0.11%
Return (-0.28) (0.52) (0.12) (1.25) (1.34) (0.70)
Strong-Weak —0.20% 0.01% —0.04% 0.10% 0.21% 0.02%
Carhart + PS;41 (-1.18) (0.08) (-0.24) (0.57) (1.19) (0.13)
Strong-Weak —0.30% —0.08% —0.10% 0.10% 0.16% —0.04%
Carhart + Sadka; 1 (-1.52) (-0.39) (-0.47)  (0.47) (0.75) (-0.29)

Panel B: EDL risk3 (first sort) and LPM liquidity risk; (second sort)

Portfolio 1 Weak EDLR3 2 3 4 5 Strong EDLR3 Average
1 Weak LPMLR3 0.23% 0.29% 0.32% 0.44% 0.48% 0.35%
2 0.36% 0.28% 0.38% 0.63% 0.55% 0.44%
3 0.48% 0.53% 0.55% 0.71% 0.80% 0.62%
4 0.85% 0.92% 0.83% 1.03% 1.08% 0.94%
5 Strong LPMLR3 0.73% 0.81% 0.80% 1.18% 0.98% 0.90%
Strong-Weak 0.50%*** 0.52%***  0.47%***  0.75%*** 0.50%*** 0.55%***
Return (3.54) (3.86) (3.43) (4.86) (3.51) (5.94)
Strong-Weak 0.54%*** 0.57%***  0.45%***  0.79%*** 0.54%*** 0.58%***
Carhart + PS;4q (3.75) (4.43) (3.18) (5.11) (3.34) (6.28
Strong-Weak 0.41%** 0.40%** 0.25% 0.82%*** 0.41%** 0.46%***
Carhart + Sadka;1 (2.23) (2.51) (1.40) (4.49) (2.10) (4.29)

This table reports the results of dependent equal-weighted portfolio sorts based on EDL risks and LPM liquidity risk,, as well
as EDL risks and LPM liquidity risk;. Panel A displays monthly average future returns of 25 LPM liquidity risk, - EDL risks
portfolio sorts. We form quintile portfolios based on EDL riske. Then, within each risk quintile, we sort stocks into equal-
weighted portfolios based on LPM liquidity risk,. Panel B displays monthly average future returns of 25 LPM liquidity risks
- EDL risks portfolio sorts. We form quintile portfolios based on EDL risk3. Then, within each risk quintile, we sort stocks
into equal-weighted portfolios based on LPM liquidity risk;. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistic. The sample covers all U.S. common stocks
traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. Alphas based on Carhart (1997)’s
four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors range from April 1983
to December 2012. t-statistics are in parentheses. ***, ** and * indicate significance at the one, five, and ten percent level,

respectively. We use Newey-West (1987) standard errors with four lags.
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Table C.5: Fama and MacBeth (1973) Regressions: LPM liquidity risk and

EDL risk
(1) ) 3) (4)
Return Return Return Return
t+1 t+1 t+1 t+1
EDL risk; -0.0035 -0.0042
(-1.38) (-1.57)
EDL risks 0.00967*** 0.0100***
(3.55) (3.69)
EDL risks 0.00942***  0.00929***
(3.34) (3.30)
past return 0.0085***  0.0086*** 0.0080*** 0.0083***
(4.16) (4.29) (3.99) (4.12)
EDR risk 0.0067***  0.0065*** 0.0061*** 0.0059***
(3.35) (3.25) (3.05) (2.96)
illiq -0.0012 0.0103 0.0353 0.0456
(-0.02) (0.18) (0.56) (0.73)
LPM return -0.0009 0.0003 -0.0005 0.0006
(-0.60) (0.18) (-0.36) (0.36)
LPM liquidity risk 0.0027*** 0.0031***
(4.60) (4.27)
LPM liquidity risk; -0.0019 0.0015
(-0.29) (0.20)
LPM liquidity risk, -0.0172 -0.0164
(-1.24) (-1.16)
LPM liquidity risks 0.0041*** 0.0041***
(4.28) (4.28)
Avg. R? 0.0546 0.0596 0.0611 0.0661

This table replicates the regression results of Anthonisz and Putnins (2017) and includes the EDL risks. The table displays
the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions of monthly excess
returns over the risk-free rate at month ¢ + 1 on EDL risk;, EDL risks, EDL risks, the past 12-month excess returns (past year
return), EDR risk, illiquidity (illiq), as well as LPM return, LPM liquidity risk, LPM liquidity risk,, LPM liquidity risk,, and
LPM liquidity risks, computed as in Anthonisz and Putnins (2017). All risk and firm characteristics are calculated using data
available at (the end of) month ¢. A detailed description of the computation of these variables is given in the main text and in
Appendix D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January

1969 to December 2012. t-statistics are in parentheses. , **, and * indicate significance at the one, five, and ten percent

level, respectively. We use Newey-West (1987) standard errors with four lags.
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D Appendix: Brief Definitions and Data Sources of
Main Variables

The following table briefly defines the main variables used in our empirical analysis. Ab-

breviations for the data sources are:
(i) CRSP: CRSP’s Stocks Database
(ii) KF: Kenneth French’s Data Library
(iii) CS: Compustat
(iv) OP: The homepages of authors of the respective original papers

EST indicates that the variable is estimated or computed based on original variables from the
respective data sources. Note that the eight liquidity proxies we use are defined separately

in Appendix A.
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Panel A: Return- and Liquidity-Based Variables

Variable Name Description Source

Return, Raw excess return of a portfolio (stock) over the risk-free rate in montht¢. CRSP, KF,
As risk-free rate we use the 1-month T-Bill rate. EST

EDL risk; Extreme Downside Liquidity Risk 1 of a stock. Lower tail dependence be- CRSP,
tween stock liquidity-shocks and (value-weighted) market liquidity-shocks, EST
estimated based on weekly data from a 3-year rolling window, as detailed
in Appendix B.

EDL risks Extreme Downside Liquidity Risk 2 of a stock. Lower tail dependence CRSP,
between stock returns and (value-weighted) market liquidity-shocks, esti- EST
mated based on weekly data from a 3-year rolling window, as detailed in
Appendix B.

EDL risks Extreme Downside Liquidity Risk 3 of a stock. Lower tail dependence CRSP,
between stock liquidity-shocks and (value-weighted) market returns, esti- EST
mated based on weekly data from a 3-year rolling window, as detailed in
Appendix B.

EDR (EUR) risk Extreme Downside (Upside) Return Risk of a stock. Lower (Upper) tail CRSP,
dependence between stock returns and (value-weighted) market returns, EST
estimated based on weekly data from a 3-year rolling window, as detailed
in Appendix B.

Aggregate Aggregate Extreme Downside Liquidity Risk 1. Value-weighted average CRSP,

EDL risk; of EDL risk (EDL risk;) for each week over all stocks in the sample, as EST
detailed in the main text.

Aggregate Aggregate Extreme Downside Liquidity Risk 2. Value-weighted average CRSP,

EDL risks of EDL risk (EDL risky) for each week over all stocks in the sample, as EST
detailed in the main text.

Aggregate Aggregate Extreme Downside Liquidity Risk 3. Value-weighted average CRSP,

EDL risks of EDL risk (EDL risks) for each week over all stocks in the sample, as EST
detailed in the main text.

EUL riskq Extreme Upside Liquidity Risk 1 of a stock. Lower tail dependence between CRSP,
stock liquidity-shocks and (value-weighted) market illiquidity-shocks, esti- EST
mated based on weekly data from a 3-year rolling window.

EUL risks Extreme Upside Liquidity Risk 2 of a stock. Lower tail dependence be- CRSP,
tween stock returns and (value-weighted) market illiquidity-shocks, esti- EST
mated based on weekly data from a 3-year rolling window.

EUL risks Extreme Upside Liquidity Risk 3 of a stock. Lower tail dependence be- CRSP,
tween stock illiquidity-shocks and (value-weighted) market returns, esti- EST

mated based on weekly data from a 3-year rolling window.
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Variable Name Description Source
Br Factor loading on the market factor from a CAPM one-factor regression es- CRSP,
timated based on a 3-year rolling window of weekly data: Bz = %’W EST
Br Downside beta estimated based on a 3-year rolling window of weekly data, CRSP,
as defined in Ang et al. (2006a): EST
- COV(Ti77'm,|7"m<,U'm) :
Br = VAR (o o iy where p,, is the mean market return.
,BE Upside beta. As (5, but with inverted signs within the conditional CRSP,
(co)variance. EST
Br1 Liquidity beta 1 as defined in Acharya and Pedersen (2005), estimated CRSP,
based on a 3-year rolling window of weekly data: 81, = VC OR\(,T(L _l’l"i) , where EST
l; and [,, are the stock- and market-liquidity innovations, as described in
the main text and Appendix B.
Br2 Liquidity beta 2 as defined in Acharya and Pedersen (2005), estimated CRSP,
based on a 3-year rolling window of weekly data: Sro = \? %\(/r(;_llyj) EST
Br3 Liquidity beta 3 as defined in Acharya and Pedersen (2005), estimated CRSP,
based on a 3-year rolling window of weekly data: 8p3 = \? ORYT(ZT?))' EST
Br Joint linear liquidity risk. 8 = 81 + B2 + B3 CRSP,
EST
B Downside liquidity beta 1, estimated based on a 3-year rolling window of CRSP,
. A= COV(li’lm\lm<Mm) e
weekly data: 7, = VAR o[l ) where p,,, is the mean weekly EST
market liquidity innovation.
Bro Downside liquidity beta 2, estimated based on a 3-year rolling window of CRSP,
L oa— COV(ri,lm\lm<mm)
weekly data: 3;, = VARG —ln [l EST
Brs Downside liquidity beta 3, estimated based on a 3-year rolling window of CRSP,
. - COV(li,rm\'r‘m<p4rm) .
weekly data: 3, = VARG Lol gy where p,, is the mean weekly EST
market return.
B Joint linear downside liquidity risk. 8, = 8., + B4 + B3 CRSP,
EST
,82 Joint linear upside liquidity risk. As 8, , but with inverted signs within the CRSP,
(co)variances. EST
BTail Exposure to tail risk, as measured in Kelly and Jiang (2014), based on a CRSP,
3-year rolling window of weekly data. EST
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Variable Name Description Source
Carhart + PS Al-  Carhart (1997)’s four factor alpha extented by the Pastor and Stam- CRSP, OP,
pha baugh (2003) traded liquidity factor. EST
Carhart + Sadka Carhart (1997)’s four factor alpha extented by the Sadka (2006) fixed- CRSP, OP,
Alpha transitory and variable-permanent liquidity factors. EST

idio vola A stock’s idiosyncratic volatility, defined as the 3-year rolling window CRSP,
standard deviation of the CAPM-residuals of its weekly returns. EST

coskew The coskewness of a stock’s 3-year rolling window weekly returns with ~CRSP,
the market: EST
_ Elri—p) (rm—pm)®]
coskew VVAR@)VARGr )

LPM return Lower partial co-moment between a stock return and the market as CRSP,
computed in Anthonisz and Putnins (2017), estimated based on a 6- EST
month rolling window of daily data.

LPM liquidity risk; = Lower partial co-moment between a stock’s liquidity and market liquid- CRSP,
ity as computed in Anthonisz and Putnins (2017), estimated based on EST
a 6-month rolling window of daily data.

LPM liquidity risk, Lower partial co-moment between a stock’s return and market liquidity = CRSP,
as computed in Anthonisz and Putnins (2017), estimated based on a EST
6-month rolling window of daily data.

LPM liquidity risks ~Lower partial co-moment between a stock’s liquidity and the market CRSP,
return as computed in Anthonisz and Putnins (2017), estimated based EST
on a 6-month rolling window of daily data.

LPM liquidity risk ~ Joint LPM liquidity risk of a stock. LPM liquidity risk = CRSP,
LPM liquidity risk; + LPM liquidity risk, + LPM liquidity risk;. EST

liquidity tail risk Exposure to liquidity tail risk, as measured in Wu (2017), based on a CRSP,
3-year rolling window of weekly data. EST

illig Amihud (2002) illiquidity ratio (average over last year). CRSP,
EST

past return Last year’s return for a given stock. CRSP,
EST
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Variable Name Description Source
Marketrf Value-weighted CRSP market-return in excess of the risk-free rate. KF
SMB Small-Minus-Big factor portfolio return, available for each month. KF
HML High-Minus-Low factor portfolio return, available for each month. KF
MOM Winner-Minus-Loser (momentum) factor portfolio return, available for each ~ KF
month.
PS Liqui Pastor and Stambaugh (2003)’s traded liquidity risk factor. oP
Sadka Liqui Sadka (2006)’s fixed-transitory and variable-permanent liquidity factors. oP
EDRR Chabi-Yo et al. (2018)’s equally-weighted EDR risk factor portfolio return. OP
Tail Kelly and Jiang (2014)’s equal-weighted tail risk factor portfolio return. CRSP,
EST
BAB Frazzini and Pedersen (2014)’s U.S. equity betting-against-beta return. oprP
Max Bali et al. (2011)’s equally-weighted lottery factor. oP
Standard- Standard-deviation of the past 3 years’ weekly returns or liquidity shocks. CRSP,
Deviation EST
VaR Value at Risk. 5% quantile of the past 3 years’ weekly returns or liquidity CRSP,
shocks. EST
CoVaR Conditional Value at Risk. Conditional mean of the past 3 years’” weekly ~CRSP,
returns or liquidity shocks below the 5% quantile. EST
Panel B: Other Firm Characteristics
Variable Name Description Source
size The natural logarithm of a firm’s equity market capitalization in million CS
USD.
btm A firm’s book-to-market ratio computed as the ratio of CS book value of CS
equity per share (i.e., book value of common equity less liquidation value
(CEQL) divided by common share outstanding (CSHO)) to share price
(i.e., market value of equity per share).
SIC 2, 3, 4 2-, 3- and 4-digit Standard Industrial Classification. CRSP
FF 12, 48 Fama and French’s 12 and 48 industry classifications. KF
DGTW Daniel et al. (1997)’s characteristic-based benchmark, available via Russ OP

Wermer’s homepage.
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Figure 1: Aggregate EDL Risk over Time (1969 - 2012)
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This figure displays the evolution of aggregate EDL risk;, aggregate EDL risks, and aggregate EDL risks
over time. Aggregate EDL risk;, aggregate EDL risks, and aggregate EDL risks in week t is defined as the
value-weighted average of EDL risk; (EDL risks, EDL risks) over all stocks ¢ in our sample. The sample
covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969
to December 2012.
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Figure 2: Cumulative Alpha of a Trading Strategy Based on EDL risk;, EDL risks, and EDL risks
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This figure displays the evolution of the Carhart (1997) four factor alpha extended by the Pastor and

Stambaugh (2003) traded liquidity factor of a cumulative trading strategy consisting of buying stocks with
high EDL risk; (EDL risks, EDL risks) and selling stocks with low EDL risk; (EDL riske, EDL risks) with

monthly rebalancing (no trading costs are taken into account). The sample covers all U.S. common stocks

traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012.
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Table 3: Univariate Equal-Weighted Portfolio Sorts: EDL Risk Compnents and Returns

Panel A: EDL risk;

(1) (2) (3) (4)
Portfolio EDL risk; Returny41 Carhart + PSyy;  Carhart 4+ Sadkagyq
1 Weak EDL risk; 0.00 0.64% 0.00% 0.00%
2 0.01 0.66% 0.03% 0.02%
3 0.04 0.58% -0.04% -0.04%
4 0.09 0.69% 0.08% 0.10%
5 Strong EDL risk, 0.19 0.62% -0.02% 0.02%
Strong - Weak 0.19 —0.02% —0.02% 0.02%
(-0.21) (-0.25) (0.22)
Annualized Spread —0.16% -0.21% 0.23%
Panel B: EDL risks,
1) 2) 3) (4)
Portfolio EDL riske  Return;;; Carhart + PSy;y;  Carhart + Sadka;y
1 Weak EDL risks 0.00 0.44% -0.17% -0.24%
2 0.02 0.56% -0.07% -0.05%
3 0.05 0.59% -0.04% -0.01%
4 0.09 0.68% 0.05% 0.10%
5 Strong EDL risks 0.17 0.78% 0.17% 0.17%
Strong - Weak 0.17 0.34%*** 0.34%*** 0.41%***
(4.52) (3.63) (4.00)
Annualized Spread 4.04% 4.04% 4.95%
Panel C: EDL risk;
(1) (2) (3) (4)
Portfolio EDL risks Returny;; Carhart + PS;;  Carhart + Sadka;q
1 Weak EDL risks 0.00 0.55% -0.08% -0.07%
2 0.01 0.54% -0.09% -0.10%
3 0.03 0.55% -0.05% -0.06%
4 0.08 0.79% 0.13% 0.13%
5 Strong EDL risks 0.16 0.75% 0.14% 0.20%
Strong - Weak 0.16 0.20%** 0.21%** 0.26%**
(2.55) (2.52) (2.64)
Annualized Spread 2.41% 2.55% 3.17%
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Table 3: Univariate Equal-Weighted Portfolio Sorts: EDL Risk Compnents and Returns

This table reports equal-weighted average monthly ¢ + 1 excess returns for portfolios sorted by the different
EDL risk components EDL risk; (Panel A), EDL risks (Panel B), and EDL risks (Panel C). Each month ¢
we rank stocks into quintiles (1-5) based on the respective EDL risk component over the past three years
and form equal-weighted portfolios at the beginning of each monthly period. We report average returns in
excess of the one-month T-Bill rate over the month ¢+ 1, alphas based on Carhart (1997)’s four factor model
extended by the Pastor and Stambaugh (2003) traded liquidity factor and the Sadka (2006) fixed-transitory
and variable-permanent liquidity factors. The row labelled 'Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistic. The sample covers all
U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969 to December

2012. t-statistics are in parentheses. , **, and * indicate significance at the one, five, and ten percent
level, respectively. We use Newey-West (1987) standard errors with four lags.
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Table 4: Bivariate Equal-Weighted Portfolio Sorts with EDL risks

Panel A: EDL risks and SBrs Risk

Portfolio 1 Weak B9 2 3 4 5 Strong 812 Average
1 Weak EDL risks 0.42% 0.59% 0.54% 0.52% 0.32% 0.48%
2 0.45% 0.62% 0.58% 0.59% 0.41% 0.53%
3 0.59% 0.62% 0.69% 0.59% 0.52% 0.60%
4 0.60% 0.75% 0.76% 0.76% 0.63% 0.70%
5 Strong EDL risks 0.65% 0.74% 0.80% 0.75% 0.72% 0.73%
Strong-Weak 0.23%** 0.15%* 0.26%** 0.23%** 0.40%*** 0.25%***
Return (2.35) (1.77) (2.54) (2.29) (3.05) (4.00)
Strong-Weak 0.20%* 0.18%*  0.32%***  0.22%** 0.39%*** 0.26%***
Carhart + PS;41 (1.84) (1.79) (2.99) (2.12) (2.83) (3.75)
Strong-Weak 0.30%** 0.22%*  0.41%***  0.28%** 0.36%** 0.31%***
Carhart + Sadka;41 (2.25) (1.79) (3.23) (2.21) (2.08) (3.66)
Panel B: EDL risks and ;, Risk
Portfolio 1 Weak £, 2 3 4 5 Strong B}, Average
1 Weak EDL risks 0.41% 0.40% 0.50% 0.59% 0.33% 0.44%
2 0.47% 0.56% 0.56% 0.73% 0.55% 0.57%
3 0.46% 0.53% 0.69% 0.65% 0.55% 0.58%
4 0.51% 0.73% 0.73% 0.74% 0.76% 0.69%
5 Strong EDL risks 0.69% 0.76% 0.84% 0.79% 0.68% 0.75%
Strong-Weak 0.28%*** 0.36%***  0.34%***  0.20%* 0.35%*** 0.31%***
Return (2.66) (4.03) (3.99) (1.92) (2.83) (5.00)
Strong-Weak 0.25%** 0.31%***  0.34%*** 0.18% 0.34%*** 0.28%***
Carhart + PS;41 (2.07) (3.19) (3.66) (1.55) (2.64) (4.28)
Strong-Weak 0.38%** 0.38%***  0.39%***  0.24%* 0.46%*** 0.38%***
Carhart 4+ Sadka;1 (2.53) (3.87) (3.33) (1.75) (2.86) (4.71)

Panel C: EDL risks and EDR Risk

Portfolio 1 Weak EDR Risk 2 3 4 5 Strong EDR Risk Average
1 Weak EDL riska 0.23% 0.44% 0.52% 0.51% 0.64% 0.47%
2 0.29% 0.49% 0.65% 0.67% 0.73% 0.56%
3 0.38% 0.50% 0.62% 0.67% 0.80% 0.59%
4 0.43% 0.58% 0.77% 0.66% 0.95% 0.68%
5 Strong EDL risks 0.48% 0.70% 0.72% 0.86% 0.93% 0.74%
Strong-Weak 0.25%** 0.26%**  0.20%**  0.35%*** 0.29%*** 0.27%***
Return (2.23) (2.33) (1.97) (3.71) (2.72) (3.99)
Strong-Weak 0.19% 0.27%**  0.24%**  0.41%*** 0.29%** 0.28%***
Carhart + PS; 11 (1.56) (2.05) (2.01) (3.65) (2.30) (3.23)
Strong-Weak 0.18% 0.40%**  0.33%**  0.51%*** 0.24%* 0.33%***
Carhart + Sadka; 1 (1.14) (2.54) (2.29) (3.84) (1.67) (3.32)
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Panel D: EDL risks and Liquidity Tail Risk

Portfolio 1 Weak liqui tail risk 2 3 4 5 Strong liqui tail risk ~ Average
1 Weak EDL risks 0.32% 0.63% 0.61% 0.59% 0.77% 0.58%
2 0.75% 0.50% 0.77% 0.70% 0.84% 0.71%
3 0.76% 0.79% 0.68% 0.91% 0.81% 0.79%
4 0.82% 0.88% 0.88% 0.85% 0.91% 0.87%
5 Strong EDL risks 0.90% 0.88% 0.90% 0.97% 0.95% 0.92%
Strong-Weak 0.58%*** 0.25%**  0.29%***  0.39%*** 0.18% 0.34%***
Return (4.52) (2.22) (2.69) (3.70) (1.34) (4.23)
Strong-Weak 0.56%*** 0.23%* 0.32%**  0.32%*** 0.12% 0.31%***
Carhart + PS;; 1 (4.08) (1.70) (2.43) (2.66) (0.84) (3.28)
Strong-Weak 0.52%*** 0.20% 0.33%**  0.40%*** 0.19% 0.33%***
Carhart + Sadka; 1 (3.31) (1.37) (2.29) (3.01) (1.23) (3.21)

Panel E: EDL risks and LPM Liquidity Risk 2

Portfolio 1 Weak LPM3j risk 2 3 4 5 Strong LPMj risk Average
1 Weak EDL risks 0.39% 0.51% 0.68% 0.41% 0.37% 0.47%
2 0.35% 0.69% 0.59% 0.77% 0.43% 0.57%
3 0.46% 0.63% 0.68% 0.71% 0.62% 0.62%
4 0.54% 0.77% 0.77% 0.70% 0.75% 0.71%
5 Strong EDL riskg 0.56% 0.69% 0.85% 0.79% 0.85% 0.75%
Strong-Weak 0.17% 0.18%*  0.17%*  0.38%*** 0.48%*** 0.28%***
Return (1.52) (1.95) (1.91) (3.59) (3.47) (4.53)
Strong-Weak 0.13% 0.19%* 0.17%*  0.34%*** 0.52%*** 0.27%***
Carhart 4+ PS;41 (0.99) (1.81) (1.67) (3.12) (3.16) (3.66)
Strong-Weak 0.25% 0.28%** 0.14%  0.52%*** 0.55%*** 0.35%***
Carhart + Sadka;41 (1.59) (2.00) (1.10) (3.71) (2.69) (4.10)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on Bro risk
(B, risk, EDR risk, liquidity tail risk, LPM2 liquidity risk). Then, within each risk quintile, we sort stocks into equal-weighted
portfolios based on EDL risks. Panel A displays monthly average future returns of 25 85 risk - EDL riska portfolio sorts, Panel
B shows monthly average future returns of the 25 3, , - EDL risky sorts, Panel C shows the monthly average future returns of
the 25 EDR risk - EDL risks portfolio sorts, Panel D shows the monthly average future returns of the 25 liquidity tail risk (see
Wu, 2017) - EDL risks portfolio sorts, and Panel E shows the monthly average future returns of the 25 LPMjy liquidity risk
(see Anthonisz and Putnins, 2017) - EDL risks portfolio sorts. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistics. The sample covers all U.S. common stocks
traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses.
*ax**and * indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard
errors with four lags.
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Table 5: Bivariate Equal-Weighted Portfolio Sorts with EDL risks

Panel A: EDL risks and B3 Risk

Portfolio 1 Weak B3 2 3 4 5 Strong Br3  Average
1 Weak EDL risks 0.63% 0.45% 0.53% 0.52% 0.73% 0.57%
2 0.54% 0.34% 0.49% 0.57% 0.63% 0.51%
3 0.62% 0.52% 0.59% 0.65% 0.66% 0.61%
4 0.86% 0.63% 0.80% 0.80% 0.69% 0.76%
5 Strong EDL risks 0.91% 0.60% 0.70% 0.75% 0.75% 0.74%
Strong-Weak 0.27%** 0.14%* 0.17% 0.23%** 0.02% 0.17%**
Return (2.10) (1.75) (1.60) (2.14) (0.16) (2.32)
Strong-Weak 0.27%* 0.13% 0.23%* 0.24%** —0.03% 0.17%**
Carhart + PS;11 (1.68) (1.47) (1.86) (2.07) (-0.26) (2.09)
Strong-Weak 0.16% 0.25%**  0.32%** 0.19% 0.03% 0.19%**
Carhart 4+ Sadkaz1 (0.85) (2.15) (2.19) (1.30) (0.17) (1.99)
Panel B: EDL risk; and ;5 Risk
Portfolio 1 Weak B 4 2 3 4 5 Strong (] 4 Average
1 Weak EDL risks 0.53% 0.42% 0.44% 0.68% 0.62% 0.54%
2 0.51% 0.47% 0.54% 0.58% 0.71% 0.56%
3 0.59% 0.54% 0.55% 0.72% 0.63% 0.61%
4 0.67% 0.66% 0.71% 0.77% 0.77% 0.72%
5 Strong EDL risks 0.83% 0.75% 0.65% 0.85% 0.72% 0.76%
Strong-Weak 0.29%** 0.33%*** 0.21%** 0.16% 0.10% 0.22%***
Return (2.52) (4.10) (2.34) (1.49) (0.73) (3.36)
Strong-Weak 0.23%* 0.31%*** 0.25%** 0.20% 0.08% 0.21%***
Carhart + PS;41 (1.88) (3.65) (2.45) (1.62) (0.59) (2.97)
Strong-Weak 0.23% 0.38%***  0.43%***  0.14% 0.06% 0.25%***
Carhart + Sadka41 (1.52) (3.61) (3.41)  (0.88) (0.35) (2.87)

Panel C: EDL risks and EDR Risk

Portfolio 1 Weak EDR Risk 2 3 4 5 Strong EDR Risk  Average
1 Weak EDL risks 0.30% 0.42% 0.73% 0.59% 0.79% 0.57%
2 0.40% 0.44% 0.51% 0.58% 0.75% 0.54%
3 0.23% 0.40% 0.61% 0.76% 0.81% 0.56%
4 0.55% 0.84% 0.76% 0.77% 0.95% 0.77%
5 Strong EDL risks 0.55% 0.78% 0.75% 0.81% 0.82% 0.74%
Strong-Weak 0.25%** 0.36%***  0.02%  0.22%** 0.03% 0.18%**
Return (2.09) (3.18)  (0.19)  (2.08) (0.27) (2.37)
Strong-Weak 0.22%* 0.37%***  0.05%  0.22%* 0.07% 0.18%**
Carhart + PS4y (1.78) (3.04)  (0.36)  (1.88) (0.56) (2.24)
Strong-Weak 0.32%** 0.36%**  0.07%  0.24%* 0.15% 0.23%**
Carhart + Sadkay1 (2.03) (2.40)  (0.47)  (1.71) (1.03) (2.35)
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Panel D: EDL risks and Liquidity Tail Risk

Portfolio 1 Weak liqui tail risk 2 3 4 5 Strong liqui tail risk Average
1 Weak EDL risks 0.72% 0.65%  0.66% 0.68% 0.67% 0.68%
2 0.65% 0.63%  0.62% 0.75% 0.83% 0.70%
3 0.57% 0.61% 0.80% 0.68% 0.80% 0.69%
4 0.88% 0.87%  0.97% 0.97% 1.03% 0.94%
5 Strong EDL risks 0.82% 0.86%  0.84% 0.98% 0.99% 0.90%
Strong-Weak 0.10% 0.21%* 0.18%  0.30%*** 0.32%** 0.22%***
Return (0.79) (1.81) (1.60) (2.80) (2.35) (2.82)
Strong-Weak 0.09% 0.21%* 0.13%  0.32%*** 0.28%** 0.21%**
Carhart + PS;4 1 (0.70) (1.69)  (1.12)  (2.82) (1.99) (2.47)
Strong-Weak 0.09% 0.22%  0.19%  0.42%*** 0.41%** 0.26%***
Carhart + Sadkag1 (0.54) (1.53)  (1.34)  (3.25) (2.48) (2.73)

Panel E: EDL riskz and LPM Liquidity Risk 3

Portfolio 1 Weak LPM3 risk 2 3 4 5 Strong LPM3 risk  Average
1 Weak EDL risks 0.18% 0.39% 0.52% 0.85% 0.88% 0.56%
2 0.41% 0.31% 0.54% 0.82% 0.73% 0.56%
3 0.29% 0.37% 0.63% 0.84% 0.85% 0.60%
4 0.47% 0.59% 0.69% 1.17% 1.05% 0.79%
5 Strong EDL risks 0.43% 0.51% 0.75% 1.07% 0.95% 0.74%
Strong-Weak 0.25%* 0.13%  0.23%**  0.22%** 0.07% 0.18%**
Return (1.91) (1.33)  (2.25) (2.14) (0.55) (2.57)
Strong-Weak 0.21%* 0.12% 0.26%*  0.29%*** 0.04% 0.19%**
Carhart 4+ PS;41 (1.66) (1.25) (1.94) (2.66) (0.24) (2.41)
Strong-Weak 0.21% 0.21%*  0.29%*  0.46%*** 0.01% 0.23%**
Carhart 4+ Sadka;41 (1.24) (1.69) (1.79) (3.35) (0.05) (2.52)

This table reports the results of dependent equal-weighted portfolio sorts. First, we form quintile portfolios sorted on 3 risk
(523 risk, EDR risk, liquidity tail risk, LPM3 liquidity risk). Then, within each risk quintile, we sort stocks into equal-weighted
portfolios based on EDL risks. Panel A displays monthly average future returns of 25 8 3 risk - EDL risks portfolio sorts, Panel
B shows monthly average future returns of the 25 3, ; - EDL risks sorts, Panel C shows the monthly average future returns of
the 25 EDR risk - EDL risks portfolio sorts, Panel D shows the monthly average future returns of the 25 liquidity tail risk (see
Wu, 2017) - EDL risks portfolio sorts, and Panel E shows the monthly average future returns of the 25 LPM3s liquidity risk
(see Anthonisz and Putnins, 2017) - EDL risks portfolio sorts. The row labelled ’Strong - Weak’ reports the difference between
the returns and alphas of portfolio 5 and portfolio 1 with corresponding t-statistics. The sample covers all U.S. common stocks
traded on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in parentheses.
#axx*and * indicate significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard
errors with four lags.
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Table 6:

EDL risks and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) @ (5) (6)
EDL risks EDL risks EDL risks EDL risks EDL risko EDL risks
(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)
Marketrf 0.0912*** 0.1070*** 0.1035*** 0.0870*** 0.1119*** 0.1157***
(6.14) (4.83) (4.39) (4.32) (4.65) (5.37)
SMB -0.0627** -0.0633** -0.1009*** -0.0658** -0.0596**
(-2.24) (-2.27) (-2.88) (-2.06) (-2.22)
HML 0.0511 0.0514 0.0773 0.0568 0.1172%**
(1.37) (1.44) (1.61) (1.42) (2.74)
MOM -0.0548 -0.0560 -0.0496 -0.0547 -0.0294
(-0.98) (-1.15) (0.97) (-0.93) (-0.57)
EDRR 0.0275
(0.69)
Max 0.0445
(1.21)
Tail -0.0166
(-0.62)
BAB -0.1215%**
(-3.88)
const 0.30%*** 0.32%*** 0.31%*** 0.34%*** 0.37%*** 0.37%***
(4.29) (3.63) (3.41) (3.56) (3.96) (4.15)
Annualized 3.57% 3.82% 3.74% 4.08% 4.50% 4.50%
Alpha
R? 0.068 0.119 0.119 0.128 0.124 0.167
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Panel B: Other Factor Models

Factor Model Annualized «

Fama-French 5-Factor Model (Fama and French, 2015) 3.14%*** (3.98)
Novy-Marx 4-Factor Model (Novy-Marx, 2013) 4.19%*** (3.15)
Hou-Xue-Zhang 4-Factor Model (Hou et al., 2015) 3.65%*** (3.64)
Carhart 4-Factor Model + short- and long-term reversal 4.18%*** (3.28)
Carhart 4-Factor Model + leverage factor (Adrian et al., 2014) 4.13%*** (3.53)
Carhart 4-Factor Model + quality-minus-junk (Asness et al., 2015) 3.89%*** (3.67)
Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer and Jiang, 2010) | 3.95%*** (4.60)
Carhart 4-Factor Model + LPM liquidity risk (Anthonisz and Putnins, 2017) 3.88%*** (3.63)
Carhart 4-Factor Model + liquidity tail risk (Wu, 2015) 4.46%*** (3.97)
Carhart 4-Factor Model + mispricing (Stambaugh and Yuan, 2017) 4.17%*** (4.10)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-
tween past high EDL risks (quintile 5) and past low EDL risks (quintile 1) portfolios on different factor
models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset
pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor
model by Carhart (1997), Chabi-Yo et al. (2018)’s equal-weighted EDRR, (EDRR) factor, Bali et al. (2011)’s
equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly
and Jiang (2014), and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The
factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou et al. (2015) and
Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended by the Fama
and French short- and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-
minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from Hirshleifer and
Jiang (2010), the lower partial moment liquidity risk factor from Anthonisz and Putnins (2017), the Wu
(2017) liquidity tail risk factor, and the two mispricing factors of Stambaugh and Yuan (2017). Portfolios
of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded
on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in
parentheses. *** ** and * indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with four lags.
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Table 7:

EDL risks and Returns: Factor Models

Panel A: Factor Models

(1) (2) (3) (4) (5) (6)
EDL risks  EDL riskg  EDL risks EDL risks  EDL risk3  EDL risks
(PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1) (PF5-1)
Marketrf 0.1077*** 0.1053*** 0.0925*** 0.0936*** 0.1115%** 0.1109***
(4.26) (5.09) (4.36) (4.24) (4.97) (5.31)
SMB -0.0415 -0.0316 -0.0638* -0.0422 -0.0395
(-1.23) (-0.99) (-1.69) (-1.15) (-1.22)
HML 0.0292 0.0502 0.0446 0.0520 0.0722*
(0.79) (1.34) (1.00) (1.31) (1.76)
MOM -0.1216***  -0.1431***  -0.1186***  -0.1122***  -0.1051***
(-3.08) (-3.76) (-3.21) (-2.67) (-2.79)
EDRR 0.1018**
(2.56)
Max 0.0260
(0.87)
Tail 0.0127
(0.44)
BAB -0.0789***
(-2.70)
const 0.16%** 0.23%*** 0.21%*** 0.25%*** 0.22%*** 0.27%***
(2.13) (2.96) (2.61) (2.89) (2.59) (3.26)
Annualized 1.86% 2.81% 2.52% 2.96% 2.60% 3.25%
Alpha
R2 0.083 0.193 0.270 0.195 0.196 0.211
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Panel B: Other Factor Models

Factor Model Annualized o

Fama-French 5-Factor Model (Fama and French, 2015) 1.94%** (2.10)
Novy-Marx 4-Factor Model (Novy-Marx, 2013) 2.90%*** (2.62)
Hou-Xue-Zhang 4-Factor Model (Hou et al., 2015) 2.35%** (2.24)
Carhart 4-Factor Model + short- and long-term reversal 3.00%*** (2.77)
Carhart 4-Factor Model + leverage factor (Adrian et al., 2014) 3.07%*** (3.00)
Carhart 4-Factor Model + quality-minus-junk (Asness et al., 2015) 3.21%*** (3.27)
Carhart 4-Factor Model + undervalued-minus-overvalued (Hirshleifer and Jiang, 2010) | 2.39%*** (2.65)
Carhart 4-Factor Model + LPM liquidity risk (Anthonisz and Putnins, 2017) 2.82%*** (2.95)
Carhart 4-Factor Model + liquidity tail risk (Wu, 2015) 2.75%*** (2.75)
Carhart 4-Factor Model + mispricing (Stambaugh and Yuan, 2017) 2.76%*** (2.81)

This table reports monthly OLS-regression results of a trading strategy based on the return-difference be-
tween past high EDL risks (quintile 5) and past low EDL risks (quintile 1) portfolios on different factor
models. The factors we use in Panel A include Marketrf, which is based on Sharpe (1964)’s capital asset
pricing model, SMB and HML of the Fama and French (1993) three-factor model, MOM of the four-factor
model by Carhart (1997), Chabi-Yo et al. (2018)’s equal-weighted EDRR, (EDRR) factor, Bali et al. (2011)’s
equal-weighted lottery factor (Max), as well as the equally-weighted tail-risk factor (Tail) proposed by Kelly
and Jiang (2014), and the betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014). The
factor models in Panel B include the the Fama and French (2015) five-factor model, the Hou et al. (2015) and
Novy-Marx (2013) four-factor models as well as the Carhart (1997) four-factor model extended by the Fama
and French short- and long-term reversal factors, the leverage factor from Adrian et al. (2014), the quality-
minus-junk factor from Asness et al. (2018), the undervalued-minus-overvalued factor from Hirshleifer and
Jiang (2010), the lower partial moment liquidity risk factor from Anthonisz and Putnins (2017), the Wu
(2017) liquidity tail risk factor, and the two mispricing factors of Stambaugh and Yuan (2017). Portfolios
of the EDL risk trading strategy are rebalanced monthly. The sample covers all U.S. common stocks traded
on the NYSE / AMEX and the sample period is from January 1969 to December 2012. t-statistics are in
parentheses. *** ** and * indicate significance at the one, five, and ten percent level, respectively. We use

Newey-West (1987) standard errors with four legs.
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Table 8: Fama and MacBeth (1973) Regressions
(1) ) 3) @) 5) (6) (M (8)
Return Return Return Return Return Return Return Return
t+1 t+1 t+1 t+1 t+1 t+1 t+1 (t+1,t+6)
EDL risk; -0.0026 -0.0031 -0.0015 -0.0015 -0.0012 -0.0025 -0.0019 -0.0007
(-0.90) (-1.55) (-0.71) (-0.69) (-0.56) (-0.95) (-0.79) (-0.07)
EDL risks 0.0151***  0.0124*** 0.0099*** 0.0103*** 0.0101*** 0.0096*** 0.0099*** 0.0259**
(4.34) (4.63) (3.57) (3.78) (3.66) (3.29) (3.42) (2.13)
EDL risks 0.0110***  0.0101*** 0.0104*** 0.0112%** 0.0103*** 0.0082*** 0.0081*** 0.0136*
(3.02) (4.30) (3.82) (4.07) (3.83) (2.85) (2.83) (1.78)
Br -0.0008 0.0004 0.0003 -0.0017 -0.0016 -0.0017
(-0.44) (0.23) (0.18) (-1.13) (-1.08) (-0.26)
size -0.0003 -0.0014***  -0.0014***  -0.0014***  -0.0015***  -0.0014*** -0.0063***
(-0.66) (-4.62) (-4.95) (-4.57) (-4.64) (-4.87) (-3.51)
btm 0.0026*** 0.0024*** 0.0023*** 0.0024*** 0.0027*** 0.0027*** 0.0123***
(3.46) (3.08) (2.99) (3.13) (3.39) (3.35) (2.72)
past return 0.0116*** 0.0104*** 0.0102*** 0.00151*** 0.0090*** 0.0091*** 0.0356***
(6.66) (5.60) (5.31) (5.60) (4.68) (4.76) (3.36)
Br -0.0065 -0.0080 0.0050 0.011 -0.1212
(-0.49) (-0.60) (0.27) (0.67) (-1.20)
EDR risk 0.0088*** 0.0095*** 0.0087*** 0.0079*** 0.0076*** 0.0247***
(5.16) (5.20) (5.09) (4.46) (4.31) (3.46)
illiq -0.0217 -0.0213 -0.0220 0.0423 0.0058 0.4599***
(-0.99) (-0.96) (-1.01) (0.50) (1.05) (2.62)
Brail 0.0231 0.0226 0.0285* 0.0242 0.0243 0.1674*
(1.42) (1.40) (1.71) (1.30) (1.32) (1.83)
idio vola -0.0945%** -0.0886** -0.0953*** -0.0819** -0.0787** -0.0245
(-2.72) (-2.26) (-2.76) (-2.28) (-2.19) (-0.14)
coskew -0.0001 -0.0020 -0.0002 -0.0002 -0.0003 -0.0059
(-0.08) (-0.71) (-0.11) (-0.14) (-0.19) (-0.63)
8L ~0.0127**
(-2.13)
B -0.0054
(-0.85)
Br -0.0008
(-0.75)
B 0.0007
(0.93)
liqui tail risk 0.0211*
(1.68)
LPM return 0.0021* 0.0030** 0.0044
(1.88) (2.18) (0.91)
LPM liqui risk 0.00164*
(1.94)
LPM liqui risk, -0.0035 -0.0876
(-0.40) (-1.34)
LPM liqui risky -0.0013 -0.0336
(-1.05) (-0.64)
LPM liqui riskg 0.0029** 0.0221***
(2.07) (4.94)
Avg. R? 0.0054 0.0641 0.0857 0.0858 0.0923 0.1063 0.1113 0.1273

This table displays the results of multivariate Fama and MacBeth (1973) regressions. We report the results of regressions
of monthly excess returns over the risk-free rate at month ¢ + 1 on EDL risk;, EDL riske, EDL risks, Bgr, the log of market
capitalization (size), the book-to-market ratio (btm), the past 12-month excess returns (past year return), 81, EDR risk,
illiquidity (illiq), Brqs from Kelly and Jiang (2014), idiosyncratic volatility (idio vola), coskewness (coskew), B, ﬂ;, 8L, 62‘,
Wu (2017)’s liquidity tail risk beta, as well as LPM return, LPM liquidity risk, LPM liquidity risk;, LPM liquidity risky, and
LPM liquidity risks, as in Anthonisz and Putnins (2017). All risk and firm characteristics are calculated using data available
at (the end of) month ¢. A detailed description of the computation of these variables is given in the main text and in Appendix
D. The sample covers all U.S. common stocks traded on the NYSE / AMEX and the sample period is from January 1969

to December 2012. t-statistics are in parentheses.
respectively. We use Newey-West (1987) standard errors with four lags.
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, and * indicate significance at the one, five, and ten percent level,
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Table 10: Different Liquidity Proxies: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

Liquidity Returng1 Car + PS Car + Sadka Liquidity Return¢y2 Car + PS  Car + Sadka

EDL risks 5-1 Low-Frequency (1969-2012) EDL risks 5-1 Low-Frequency (1969-2012)
illig 0.34%*** 0.34%*** 0.41%*** ‘ illig 0.20%** 0.21%** 0.26%***
(4.52) (3.63) (4.00) (2.55) (2.52) (2.69)
Corwin 0.16%* 0.19%* 0.12% Corwin 0.27%*** 0.26%*** 0.33%***
(1.78) (1.92) (1.00) (4.85) (4.42) (4.78)
Zeros —0.05% —0.04% —0.09% Zeros 0.17%*** 0.15%*** 0.19%***
(-0.82) (-0.72) (-1.16) (3.17) (2.75) (2.76)
FHT 0.11% 0.15%* 0.20%** FHT 0.20%*** 0.21%*** 0.27%***
(1.57) (1.92) (2.03) (3.14) (2.99) (2.96)
EDL risks 5-1 High-Frequency (2002-2010) EDL risks 5-1 High-Frequency (2002-2010)
EffSpr 0.48%**  0.46%***  0.49%*** EffSpr 0.35%**  0.27%"* 0.22%*
(2.47) (2.59) (2.77) (2.38) (2.19) (1.82)
RelSpr 0.07% 0.02% 0.01% RelSpr 0.25% 0.27%* 0.23%*
(0.38) (0.13) (0.05) (1.51) (1.92) (1.68)
IntAmi 0.31% 0.17% 0.16% IntAmi 0.28%** 0.22%* 0.21%*
(1.28) (0.82) (0.83) (1.93) (1.68) (1.66)
Prilmp 0.40%* 0.35%* 0.33%* Prilmp 0.15%** 0.12% 0.13%
(1.81) (1.67) (1.69) (2.18) (1.47) (1.25)

Panel B: Fama and MacBeth (1973) Regressions

Low-Frequency (1969-2012) High-Frequency (2002-2010)
(1) (2) (3) (4) (5) (6) (7 (8)
Illiq Corwin Zeros FHT EffSpr RelSpr  IntAmi Prilmp
EDL riskg  0.0099*** 0.0032 0.0011 0.0060* 0.0218** 0.0056 0.0200* 0.0188**
(3.57) (1.15) (0.16) (1.73) (2.49) (0.93) (1.91) (2.10)
EDL risks  0.0104***  0.0135***  0.0044 0.0106***  0.0180***  0.0098*  0.0123**  0.0136***
(3.82) (5.70) (1.04) (3.65) (2.93) (1.93) (2.31) (2.58)

This table reports results of univariate portfolio sorts and Fama and MacBeth (1973) regressions for different liquidity proxies.
As high-frequency liquidity proxies we use the effective spread (EffSpr), the relative spread (RelSpr), the intraday Amihud
measure (IntAms), and the price impact measure (PriImp). As low-frequency liquidity proxies we use the Amihud Illiquidity
Ratio (illig), the Corwin measure (Corwin), the Zeros measure (Zeros) and the FHT measure (FHT). A detailed description
of the computation of these variables is given in Appendix A. In Panel A we rank stocks into quintiles (1-5) based on estimated
past EDL risks and EDL risks of the different liquidity proxies over the last three years and form equal-weighted portfolios at
the beginning of each weekly period. We report differences in monthly returns, as well as differences in montly alphas based on
Carhart (1997)’s four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor and Carhart (1997)’s
four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors between portfolio 5
and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (3) from
Table 8 for different liquidity proxies. We only report the coefficient estimate for the impact of EDL riskg and EDL risksz. All
other explanatory variables of specification (5) are included in the regressions, but their coefficient estimates are suppressed.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period for the low-frequency liquidity
proxies is from January 1969 to December 2012. The sample period for the high-frequency liquidity proxies is from July 2002
to December 2010. t-statistics are in parentheses. *** ** and * indicate significance at the one, five, and ten percent level,
respectively. We use Newey-West (1987) standard errors with four lags.
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Table 11: Different Estimation Procedures: Univariate Portfolio Sorts and FMB Regressions

Panel A: Univariate Portfolio Sorts

EDL risks 5-1 EDL risks 5-1
Procedure  Returns4o Car + PS  Car + Sadka Returng4o Car + PS  Car + Sadka

Estimation Horizons & Liquidity Shocks

ly 0.13%** 0.12%* 0.15%* 0.16%*** 0.21%*** 0.26%***
(1.96) (1.76) (1.72) (2.81) (3.16) (3.37)

2y 0.22%*** 0.19%** 0.27%*** 0.22%** 0.27%*** 0.32%***
(3.10) (2.48) (3.13) (2.40) (2.86) (2.94)

5y 0.24%*** 0.22%** 0.29%** 0.39%*** 0.32%** 0.39%**
(2.59) (1.95) (2.32) (3.12) (2.37) (2.49)

diff 0.39%*** 0.39%*** 0.47%*** 0.26%** 0.26%** 0.29%**
(4.71) (3.63) (3.79) (2.37) (2.45) (2.33)

Copula Functions

C1 0.34%*** 0.34%*** 0.41%*** 0.20%** 0.21%** 0.26%***
(4.52) (3.63) (4.00) (2.55) (2.52) (2.64)

C2 0.29%*** 0.30%*** 0.35%*** 0.21%*** 0.23%*** 0.29%***
(4.03) (3.36) (3.40) (2.63) (2.76) (2.98)

C63 0.30%*** 0.30%*** 0.37%*** 0.20%** 0.24%*** 0.26%***
(4.37) (3.66) (4.03) (2.51) (2.70) (2.61)

C64 0.25%*** 0.24%*** 0.26%*** 0.23%*** 0.24%*** 0.30%***
(3.59) (2.87) (2.70) (3.17) (2.87) (3.06)

Cw 0.51%*** 0.50%** 0.65%*** 0.50%*** 0.50%*** 0.58%***
(5.60) (4.70) (5.67) (5.44) (4.93) (4.69)

Panel B: Fama and MacBeth (1973) Regressions

Estimation Horizons & Liquidity Shocks

(1) 2 (3) (4)
ly 2y 5y diff
EDL risks 0.0020 0.0049** 0.0095***  0.0142***
(1.18) (2.11) (2.87) (4.95)
EDL risks 0.0052***  0.0089***  0.0126***  0.0085%**
(3.74) (4.78) (3.83) (3.58)
Copula Functions
(5) (6) (7) (8) (9)
C1 C2 C63 C64 Cw
EDL riskg  0.0099***  0.0109***  0.0086*** 0.0066** 0.0153***
(3.57) (3.78) (3.21) (2.32) (4.00)
EDL riskg  0.0104***  0.0079*** 0.0061** 0.0080***  0.0123***
(3.82) (3.23) (2.48) (3.18) (3.76)

This table reports results of univariate portfolio sorts and Fama-MacBeth (1973) regressions for different estimation horizons,
liquidity shocks, and copula functions. We estimate EDL riske and EDL risks with different estimation horizons of 1-year,
2-years, and 5-years, as well as based on liquidity-differences instead of -shocks from an AR-model based on weekly return data.
Furthermore we estimate EDL risk with different copulas (C1-C4 and Cw). In Panel A we rank stocks into quintiles (1-5) based
on estimated past EDL riskg and EDL risks of the different estimation horizons, and different copulas, and form equal-weighted
portfolios at the beginning of each monthly period. We report differences in monthly returns, differences in alphas based on
Carhart (1997)’s four factor model extended by the Pastor and Stambaugh (2003) traded liquidity factor and Carhart (1997)’s
four factor model extended by the Sadka (2006) fixed-transitory and variable-permanent liquidity factors between portfolio 5
and portfolio 1 with corresponding statistical significance levels. Panel B shows the results of regression specification (3) from
Table 8 for different estimation procedures. We only report the coefficient estimate for the impact of EDL riskg and EDL risks.
The sample covers all U.S. common stocks traded on the NYSE / AMEX. The sample period is from January 1969 to December
2012. t-statistics are in parentheses. ***, ** and * indicate significance at the one, five, and ten percent level, respectively. We
use Newey-West (1987) standard errors with four lags.
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Table 13: Different Regression Methods

Panel A: Different Regression Methods

Regression (1) (2) 3) (4) (5) (6) (7)
EDL risks 0.0099***  0.0101***  0.0120***  0.0153***  0.0151***  0.0143***  0.00115***
(3.57) (3.63) (3.35) (4.00) (4.10) (4.89) (3.56)
EDL risks 0.0104***  0.0104***  0.0161***  0.0158***  0.0158***  0.0105*** 0.0117***
(3.82) (3.80) (3.56) (3.69) (4.04) (3.89) (3.42)
Controls yes yes yes yes yes yes yes
Method fmb fmb ols ols panel panel panel
Winsorized yes no yes yes yes yes yes
Time-Fixed Effects yes yes yes yes yes
Firm Effects no no fixed fixed random
Clustered SE firm industry no firm no
Newey-West SE no yes no no no no no

Panel B: Adjusted Returns

EDL riske  EDL risks return EDL risks  EDL risks

(t-stat) (t-stat) adjustment (t-stat) (t-stat)

Return¢ 41 0.0099*** 0.0104*** SIC-2 0.0083*** 0.0092***
(3.57) (3.82) (3.65) (4.67)

Returngy2  0.0062*** 0.0079** SIC-3 0.0076*** 0.0081***
(2.65) (2.33) (3.24) (3.89)

Returngy3 0.0056** 0.0055* SIC-4 0.0069*** 0.0078***
(2.01) (1.86) (3.01) (3.05)

Returngy4 0.0043* 0.0051* FF12 0.0068*** 0.0091***
(1.66) (1.75) (2.81) (3.64)

DGTW 0.0066*** 0.0097*** FF48 0.0075*** 0.0083***
(2.68) (3.73) (3.25) (3.25)

Panel A reports the results of different multivariate regressions on a monthly frequency. Regression (1) repeats the baseline
regression (3) from Table 8, but we now do not use Newey-West standard errors in the second stage of the Fama-MacBeth (1973)
regressions. Regression (2) repeats the standard Fama-MacBeth (1973) regression, but we do not winsorize the independent
variables. In regression (3) we perform a pooled OLS regression with time-fixed effects and standard errors clustered by stock.
Regression (4) is identical, but we cluster standard errors by the SIC-2-digits classification. Regressions (5) and (6) perform
panel regressions with firm-fixed effects. In regression (6) standard errors are additionally clustered by firm. Finally, in regression
(7) we regress excess returns on the independent variables via a random-effect panel regression. Panel B reports the result of
regression (3) of Table 8 with different return adjustments. We use monthly returns in ¢ + 1 (baseline scenario), t + 2, t + 3,
and ¢ + 4, as well as DGTW alphas (results are displayed on the left side of Panel B), and industry-adjustments (results are
displayed on the right side of Panel B). The sample period is from January 1969 to December 2012. *** ** and * indicate
significance at the one, five, and ten percent level, respectively. We use Newey-West (1987) standard errors with four lags.
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