
 

 

 

CFR Working Paper NO. 21-08 

 
Option Return Predictability with 
Machine Learning and Big Data 

 
T.G. Bali • H. Beckmeyer •  
M. Moerke • F. Weigert 



Option Return Predictability with Machine Learning
and Big Data∗

Turan G. Bali†, Heiner Beckmeyer‡, Mathis Moerke§, Florian Weigert¶

This version: August 20, 2021

Abstract
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we find that allowing for nonlinearities significantly increases the out-of-sample
performance of option and stock characteristics in predicting future option returns.
Besides statistical significance, the nonlinear machine learning models generate eco-
nomically sizeable profits in the long-short portfolios of equity options even after
accounting for transaction costs. Although option-based characteristics are the
most important standalone predictors, stock-based measures offer substantial in-
cremental predictive power when considered alongside option-based characteristics.
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by informational frictions, costly arbitrage, and option mispricing.
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1. Introduction

The importance of option markets has gained momentum over the past eight years.

According to data from the Futures Industry Association (FIA)’s annual statistical re-

view, options trading on exchanges worldwide has increased from $9.42 billion contracts

in 2013 to $21.22 billion contracts in 2020 – a percentage growth of more than 125%.

Approximately 60% of these contracts are written on individual stocks and stock indices,

making equity the most popular option underlying of financial market participants. Given

the high popularity of options trading by investors, the question arises whether individ-

ual option returns are predictable and, if yes, which characteristics can give rise to such

predictability. Our paper is devoted to answer these questions.

While classical option pricing models assume that options are redundant assets (Black

and Scholes, 1973), more recent research rejects this idea and shows that option prices

depend on other risks but the underlying’s exposure (Buraschi and Jackwerth, 2001;

Garleanu, Pedersen, and Poteshman, 2009). As an example, Goyal and Saretto (2009)

document that the cross-section of option returns reflects a premium for variance risk,

computed as the difference between historical realized volatility and at-the-money implied

volatility. In this paper, we follow the idea of characteristics-based asset pricing and link

future delta-hedged option returns to ex-ante characteristics drawn from both options

and stocks. As we eliminate the directional impact of stock prices through our hedging

procedure, we focus on risks which are inherently nonlinear and are likely to interact

with each other in complex ways. Hence, the described setup is ideally suited for the

application of machine learning models which are not only able to capture the impact of

non-linearities and interactions between a large set of option and stock characteristics,

but also mitigate the risk of in-sample model overfitting.

We study the cross-section of individual U.S. equity option returns using data from

OptionMetrics IvyDB over the period from January 1996 to December 2020. To abstract

from the directional exposure to the underlying, we follow Bakshi and Kapadia (2003)

and perform daily delta-hedges for each option as the market closes. Our main variable of

interest is the monthly excess delta-hedged option return; after accounting for different

filtering techniques, our dataset consists of more than 12 million option-month return

observations of calls and puts, all written on individual U.S. stocks.

To predict future option returns we use a total of 270 variables composed of 77 option-

based characteristics (e.g., option illiquidity, time-to maturity, or the implied shorting fee)
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and 193 stock-based characteristics.1 The stock characteristics include the 94 predictor

variables proposed by Green, Hand, and Zhang (2017) to predict the cross-section of stock

returns, 90 industry dummies, and additional characteristics that have been shown to be

significantly associated with future stock returns (such as the bear beta proposed by Lu

and Murray (2019), default risk of Vasquez and Xiao (2021), and the underlying’s close

price following Eisdorfer, Goyal, and Zhdanov (2020)). In the same fashion as Gu, Kelly,

and Xiu (2020), we apply different linear and nonlinear machine learning models to form

optimal predictions based on these option- and stock-based characteristics. Linear models

included are penalized regression models (ridge, lasso, and elastic-net) and dimensionality

reduction regressions (principal component and partial least squares). Nonlinear models

comprise gradient-boosted regression trees with and without dropout, random forests, and

fully-connected feed-forward neural networks. We also compute equal-weighted ensem-

bles of all linear and all nonlinear models to leverage the informational content of the

individual models.

To obtain out-of-sample predictions from our different machine learning models, we

proceed as follows: In a first step, we estimate the model parameters on a training sample

of five years. Subsequently, we optimize hyperparameters of the models on a two-year

validation sample. Lastly, the tuned models are used to forecast individual option returns

over the next year. This procedure is repeated for each year, expanding the training

sample by one year and consequently shifting the validation and out-of-sample period

by one year. To assess the predictive power of the different models for individual option

returns, we follow Gu et al. (2020) and Bali, Goyal, Huang, Jiang, and Wen (2021) and use

the out-of-sample R2-statistic, which benchmarks the R2 against a forecast of zero excess

returns.2 To make pairwise comparisons of the forecast accuracy of different machine

learning models, we utilize the model-free Diebold and Mariano (1995) test statistic.

Our empirical results advance the knowledge on predictability of the cross-section of

individual option returns in various dimensions: First, we show that complexity of the

prediction model matters. While none of the linear models manages to produce positive

out-of-sample R2s for the entire testing sample, all nonlinear models do. Our results

1Option characteristics operate on three different levels: First, they can be the same for all options on
the same underlying stock (e.g., the variance risk premium by Goyal and Saretto (2009)). Second, they
can be classified on the individual option contract level (e.g., the options maturity). Third, they can be
categorized on a bucket-level (e.g., the option bucket’s trading volume), where buckets are formed based
on the moneyness and time-to-maturity of the option.

2In addition, we apply the Han, He, Rapach, and Zhou (2021) cross-sectional out-of-sample R2 which
focuses on the prediction of cross-sectional option return spreads, instead of also including the time-series
variation in returns.
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reveal that the best-performing models are gradient-boosted regression trees with and

without dropout (GBR and Dart) that show out-of-sample R2s of 2.58% and 2.72%.3

Moreover, the equal-weighted ensemble of all nonlinear models beats the ensemble of

all linear models by more than 1.8% in out-of-sample R2 prediction power. Our results

are confirmed when we compare pairwise forecast accuracy using Diebold and Mariano

(1995) tests: The ensemble of all nonlinear models beats most other models significantly

at the 5% level. The only exceptions to this rule are GBR and Dart, which both produce

forecasts highly correlated with the nonlinear ensemble model (correlations amount to

0.95 and 0.94, respectively). The outperformance of nonlinear models compared to linear

models is stable over time with a higher predictability for future option returns in 71.2% of

the months in our sample.4 Interestingly, we also find better predictions for the nonlinear

models during December 2019 to April 2020, i.e., the period in which the COVID19

pandemic shook financial markets worldwide.5

Second, we inspect whether predictability of option returns through machine learning

models can be exploited in an economically profitable trading strategy. To do so, in

each month t, we first sort individual equity options into 10 decile portfolios based on the

machine learning models’ (L-En and N-En) expected return forecasts. Then, we calculate

one-month-ahead average realized returns of individual equity options in each decile.

Finally, we compute the average long-short portfolio return of a zero-net investment

portfolio by buying options with the highest expected return forecast (decile 10) and

selling options with the lowest expected return forecast (decile 1). Our results indicate

that trading strategies based on both ensembles generate economically significant return

spreads of 2.63% and 1.92% per month, both of which are statistically significant at the

1% level. The respective monthly Sharpe ratios amount to 2.06 and 1.55. As before, our

empirical results stress the importance for nonlinearities in the machine learning models.

The long-minus-short return spread of the nonlinear ensemble outperforms the return

spread of the linear ensemble by statistically significant 0.71% per month. We find that

the short leg of the arbitrage portfolio, formed by the nonlinear ensemble, contains more

3Note that the magnitude of these R2s is considerably higher than the corresponding numbers for the
cross-section of stock returns (Gu et al. (2020) find out-sample R2 of approximately 0.6% for nonlinear
machine learning models), but slightly lower than for the cross-section of bond returns (Bali et al. (2021)
document out-of-sample R2s of approximately 3.5% for nonlinear machine learning models).

4Considering the cross-sectional out-of-sample R2, this number increases to 85.6% of all months.
5Dew-Becker and Giglio (2020) show that the coronavirus epidemic is marked by an extraordinary

high level of cross-sectional uncertainty, as measured by stock options on individual firms. Similar levels
of cross-sectional uncertainty have been only witnessed during the tech boom in the early 2000s and the
financial crisis.
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short-term and fewer call options, while the long leg includes more long-term call options.

Is the displayed long-minus-short return spread of the nonlinear ensemble robust to

risk adjustments of established asset pricing models? We investigate this question by

regressing the spread return on the market, the risk factors of the Fama and French

(2015) five-factor model extended either by the Carhart (1997) momentum factor, or by

the momentum and the Pástor and Stambaugh (2003) liquidity factor, a model using

the Agarwal and Naik (2004) option-market factors, the leverage bearing capacity of

intermediaries proposed in Grünthaler, Lorenz, and Meyerhof (2020), and the Bali and

Murray (2020) factor model for optionable stocks. In all cases we find that the long-short

return spread is not substantially reduced by systematic risk adjustments and remains

economically and statistically significant. We conclude that the outperformance of a

trading strategy based on the nonlinear ensemble is not explained by various asset pricing

factors.

Ofek, Richardson, and Whitelaw (2004) observe that transaction costs in the options

market are high and that these costs can substantially reduce economic profits of option-

based trading strategies. Hence, to understand in how far the machine learning trading

strategy based on the nonlinear ensemble is implementable, we examine its profitability

after account for transaction costs. Since actual transaction costs of trades are not ob-

servable in the OptionMetrics IvyDB database, we assume that investors have to pay a

percentage of the quoted bid and ask spread, which we denote as the effective spread

(Eisdorfer et al., 2020). We consider the effective spreads of 15% and 25%. Our results

show that the monthly returns of the machine learning trading strategy remain sizeable

with monthly returns of 1.33% (0.47%) after accounting for 15% (25%) effective spreads.

Moreover, we find that one-year rolling returns of the transaction cost-adjusted trad-

ing strategy stay above zero for 15% effective spreads in all months of our sample from

January 2003 to December 2020.6

As our third main empirical result, we quantify the relative importance of different

variables for the prediction of option returns. For this purpose, we classify our 270 op-

tion and stock predictor variables into twelve sub-groups: Accruals, industry, investment,

profitability, quality, value, contract, frictions, illiquidity, informed trading, past prices,

and risk. To uncover influential sub-groups for prediction, we follow recent advances

in computer science and compute SHAP values (Lundberg and Lee, 2017), which ap-

6Trading strategies using only short-term options manage to survive 25% effective spreads for the
entire sample, and in the case of out-of-the-money short-term puts, the strategies remain profitable even
with 50% effective spreads.
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proximate changes in the model predictions had we excluded certain characteristics in

its estimation. Our results reveal that the contract-group contains the most important

predictors, which includes information about the option’s location on the underlying’s

implied volatility surface (e.g., an option’s moneyness and time-to-maturity). Illiquidity

(e.g. bid-ask spreads of the option and the underlying stock) and risk (e.g., risk-neural

moments of the underlying) measures follow as the second and third most important

variable group, respectively.

Our empirical setting also enables us to check whether option or stock characteristics

are more powerful to accurately predict future option returns. Hence, we re-estimate

the machine learning models (i) using only option-based characteristics, (ii) stock-based

characteristics, as well as (iii) option-based characteristics that operate on the bucket- or

contract level, and compare the out-of-sample forecasting results with the full information

set of all option and stock characteristics.7 We observe that the models only based on

a subset of information show severely lower out-of-sample R2s compared to the models

that incorporate all option and stock characteristics. When comparing different subsets

of information, our results indicate that restricting information to only option-based

characteristics yields substantially higher predictive R2s than information of only stock-

based characteristics. The benefit of option-derived characteristics is large and should

not be neglected when making informed forecasts on future option returns.

Finally, we determine possible sources of return predictability. To do so, we first test

if informational frictions are underpinning option return predictability. The presence of

informed traders might cause faster impounding of information, more efficient price for-

mation, and, hence, less predictability for option returns. To test this conjecture, we

apply two proxies for the presence of informed investors in security positions: the share

of institutional ownership and analyst coverage. In line with our prediction, we find that

predictability of option returns is higher for underlying stocks which are characterized by

low institutional ownership and low analyst coverage. In numbers, our results reveal that

the out-of-sample R2 for the nonlinear ensemble model equals 4.61% (2.22%) for options

whose underlyings fall within the lowest (highest) quintile of institutional ownership.

Options whose underlying stocks are followed by the fewest (most) analysts show an R2

of 4.44% (0.58%). Moreover, when applying an additional dataset consisting of option

transaction data for various types of market participants from four NASDAQ exchanges

and the CBOE C1 exchange from January 2011 to December 2020, we observe that option

7In contrast to the feature importance described above, this approach has the benefit of correctly
accounting for interaction effects between different feature groups.
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return predictability is highest for options with little demand by professional traders, but

substantial interest by public customers. We also find high levels of predictability when

public customers are long the option and institutional investors take the short side of

the contract, a phenomenon also reported in Garleanu et al. (2009) where institutional

traders act as market makers in cases where they deem option prices sufficiently high to

short them.8 In addition, we consider costly arbitrage as another source of predictability.

Our empirical results reveal a monotonically increasing relation between option return

predictability and illiquidity of the underlying stock. For the highest (lowest) quintile of

stock illiqudity, the out-of-sample R2 for the nonlinear ensemble model equals close to 5%

(0%). Lastly, we estimate the level of mispricing in a given underlying’s options by using

high-frequency realized volatility as an input to the Black and Scholes (1973) model.

Consistent with our intuition that the machine learning models manage to identify both

situations of over- and under-pricing, we find high levels of R2
OS, exceeding 2.5% in both

cases. Turning to the profitability of the machine learning portfolios conditional on the

level of mispricing, we find that betting on the portfolios for the subset of mispriced op-

tions is significantly more profitable than following the predictions for the least mispriced

options.

The remainder of the paper is as follows. Section 2 reviews the literature and outlines

our contribution. Section 3 describes the different machine learning methods implemented

in this study and explains how we evaluate the predictive power of the different models.

In Section 4, we introduce the option return data and describe the option and stock char-

acteristics used for prediction. Section 5 presents the main empirical results. Section 6

investigates the sources of option return predictability. We conclude in Section 7.

2. Related Literature

Our paper contributes to the literature on predicting and explaining the cross-section

of individual option returns. Dennis and Mayhew (2002) document the importance of

various factors, such as beta, size, and trading volume in explaining the risk-neutral

volatility skew observed in stock option prices, whereas Bollen and Whaley (2004) inves-

tigate the relation between net buying pressure and the shape of the implied volatility

8A situation like this (i.e., public customers buy and professional traders sell) is potentially explained
by different feature preferences for the option contract by the two investor groups: While risk-based
measures are most important whenever both investor groups trade in the same direction, whenever
professionals trade against public customers, our machine learning algorithms use more information
about informed trading.
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function of stock options. Garleanu et al. (2009) theoretically model and empirically in-

vestigate demand-pressure effects on option prices. Roll, Schwartz, and Subrahmanyam

(2010) examine trading volume in option markets relative to the volume in underlying

stocks and relate it to contemporaneous returns. Examining volatility risk in the op-

tions market, Goyal and Saretto (2009) find that options with a large positive difference

between realized and implied volatility have low future delta-hedged returns. Cao and

Han (2013) find that delta-hedged option returns decrease monotonically with an in-

crease in the idiosyncratic volatility of the underlying stock. In a similar vein, Byun

and Kim (2016) show that call options written on the most lottery-like stocks underper-

form otherwise similar call options on the least lottery-like stocks by more than 10% per

month. An, Ang, Bali, and Cakici (2014) show, among others, that the cross-section of

stock returns predicts option implied volatilities. Christoffersen, Goyenko, Jacobs, and

Karoui (2018) include illiquidity premia in option valuation models and Kanne, Korn, and

Uhrig-Homburg (2020) find that these premia are negative (positive) if there is net buying

(selling) pressure. Ramachandran and Tayal (2021) report a monotonic relationship be-

tween various measures of short-sale constraints and delta-hedged returns of put options

on overpriced stocks. Cao, Han, Tong, and Zhan (2021) uncover return predictability in

the cross-section of delta-hedged equity options based on stock-based information, such

as prices, profit margins, and firm profitability. Finally, in a contemporaneous working

paper to ours, Goyenko and Zhang (2021) apply machine learning techniques to analyze

which characteristics drive option and stock returns. Our paper differs from Goyenko and

Zhang (2021) in several important aspects: First, our sample of option returns is sub-

stantially larger and comprises more than 33 times as many option-month observations.

Instead of analyzing option portfolios as in Goyenko and Zhang (2021), we focus on single

option contracts. Second, our paper focuses on the predictability of the cross-section of

option returns, while Goyenko and Zhang (2021) also consider option determinants to

predict the cross-section of stock returns. Finally, we provide a comprehensive investi-

gation of the economic underpinnings of option return predictability and offer important

insights on the cross-sectional pricing of equity options with machine learning and big

data.

We also extend the literature on the usage of machine learning techniques in empirical

asset pricing. So far, the majority of papers applies machine learning models to predict

the cross-section of individual stock returns:9 Rapach, Strauss, and Zhou (2013) are the

9Nagel (2021) provides an overview of machine learning methods and the challenges involved when
applying them to questions in empirical asset pricing.
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first to use Lasso in predicting market returns across countries. Moritz and Zimmermann

(2016) apply tree-based conditional portfolio sorts to examine the relation between past

and future stock returns. Kelly, Pruitt, and Su (2019) apply instrumented principal com-

ponent analysis, detailed in Kelly, Pruitt, and Su (2020b), to model the cross-section

of returns which allows for latent factors and time-varying loadings. Gu et al. (2020)

perform a comparative analysis of machine learning methods to measure equity asset risk

premiums based on a large set of stock characteristics. Whereas Gu et al. (2020) use a

broad set of stock characteristics (see Green et al., 2017), Murray, Xiao, and Xia (2021)

focus solely on historical price data. The authors find that machine learning based fore-

casts on past cumulative returns have economically and statistically significant predictive

power for the cross-section of future stock returns. Neuhierl, Tang, Varneskov, and Zhou

(2021) examine the predictive power of option characteristics for the cross-section of stock

returns by jointly using broad sets of firm and option characteristics. Kozak, Nagel, and

Santosh (2020) impose an economically motivated prior on stochastic discount factor

coefficients that shrinks contributions of low-variance principal components for the cross-

section of stock returns and Chen, Pelger, and Zhu (2021) add to these insights, using

deep neural networks to estimate an asset pricing model for individual stock returns.

Martin and Nagel (2020) show that asset returns may appear predictable in-sample when

analyzing the economy ex-post and stress the importance of out-of-sample tests. Feng,

Giglio, and Xiu (2020) propose a new model selection method which accounts for model

selection mistakes that produce a bias due to omitted variables, and Lettau and Pel-

ger (2020) construct a new estimator that generalizes principle component analysis by

including a penalty on the pricing error in expected returns. A nonparametric method

to dissect characteristics based on the adaptive group Lasso is proposed by Freyberger,

Neuhierl, and Weber (2020). Giglio, Liao, and Xiu (2021) perform “thousands of alpha

tests” to develop a new framework to rigorously perform multiple hypothesis testing in

linear asset pricing models. Grammig, Hanenberg, Schlag, and Sönksen (2020) contrast

theory-based and machine learning methods for measuring stock risk premia. The afore-

mentioned studies have mainly focused on the cross-section of U.S. stocks. Leippold,

Wang, and Zhou (2021) employ machine learning algorithms to analyse return prediction

factors in the Chinese stock market. Recent research also expands the application of

machine learning models for the prediction of other asset classes: Kelly, Palhares, and

Pruitt (2020a) propose a conditional factor model for corporate bonds returns resting on

instrumented principal component analysis. Bali et al. (2021) find that machine learning

models substantially improve the out-of-sample performance of stock and bond charac-
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teristics when predicting the cross-section of corporate bond returns. Bianchi, Büchner,

and Tamoni (2021) apply similar techniques to Treasury securities, whereas Filippou, Ra-

pach, Taylor, and Zhou (2020) employ them in the context of exchange rates. DeMiguel,

Gil-Bazo, Nogales, and Santos (2021) show that machine learning helps to select future

outperforming mutual funds and Wu, Chen, Yang, and Tindall (2021) establish similar

conclusions for hedge funds. Finally, Li and Rossi (2020) apply machine learning to select

mutual funds on the basis of their exposure to a large set of various stock characteristics.

Our article is — simultaneously with Goyenko and Zhang (2021) — the first to predict

the cross-section of individual option returns using a large set of linear and nonlinear

machine learning models.

3. Methodology and Performance Evaluation

In its most general form, we express future option returns as the sum of expected

returns and noise with mean zero:

ri,s,t+1 = Et[ri,s,t+1] + εi,s,t+1. (1)

The central element we aim to estimate is a functional representation g(zi,s,t), which links

expected future returns Et[ri,s,t+1] to characteristics zi,s of option i on underlying s:

Et[ri,s,t+1] = g(zi,s,t). (2)

Methods considered: Following the growing literature on machine learning algo-

rithms for predicting asset returns (Gu et al., 2020; Bianchi et al., 2021; Bali et al., 2021),

we compare a variety of machine learning methods with increasing complexity, and con-

trast the implications of linear and nonlinear models. For penalized linear models, we

consider Lasso (Tibshirani, 1996), Ridge (Hoerl and Kennard, 1970) and Elastic Net re-

gressions (Zou and Hastie, 2005, ENet). For linear dimension reduction techniques, we use

principal component (PCR) and partial least squares regressions (PLS). To model nonlin-

earities, we consider tree-based methods; random forests (Breiman, 2001, RF), gradient

boosted tree regressions (Friedman, 2001, GBR) and gradient boosted tree regressions

with dropout (Gilad-Bachrach and Rashmi, 2015, Dart), as well as deep feed-forward

neural networks (FFN) as universal function approximators (Hornik, Stinchcombe, and

White, 1989). Appendix IA1 provides a detailed description of these methods.

9
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Forecast ensembles: We furthermore form ensembles of the five linear (L-En) and

the four nonlinear models (N-En) to leverage the predictive power of multiple models

(Goyal and Welch, 2008). We consider a simple ensemble, which equally weights the

predictions of each method included. Building on the insights of Bates and Granger

(1969), Rapach, Strauss, and Zhou (2010) document large benefits in economic forecasts

using this type of ensemble. Denote the forecast of a given model by r̂i,s,t+1. Then, the

ensemble forecasts for t+ 1 will be:

r̂Eni,s,t+1 =
1

J

∑
j∈J

r̂
(j)
i,s,t+1, (3)

where J contains the target models and J denotes the number of models in the set.

The design decision to create an ensemble of linear and one of nonlinear models allows

us to directly analyze the informativeness of modeling nonlinear interactions and leverage

the predictive power of multiple methods.

Assessing predictive power: We use the standard out-of-sample R2 statistic to

gauge the predictive power over single-equity option returns (Gu et al., 2020):

R2
OS = 1−

∑
(i,t)∈T3(ri,s,t+1 − r̂i,s,t+1)2∑

(i,t)∈T3 r
2
i,s,t+1

. (4)

R2
OS measures the reduction in the mean squared forecast error (MSFE) compared to a

naive benchmark of zero excess returns for all options. We evaluate the predictive power

on a testing sample, which is disjoint from the data used to estimate the model parameters

and hyperparameters (such as the magnitude of the Lasso penalty). More specifically,

we start by estimating model parameters on a training sample T1 of five years (January

1996 – December 2000). We then perform an extensive hyperparameter optimization

validating the method’s fit in the next two years T2 (2001 – 2002). Lastly, for each

method, we use an equal-weighted ensemble of the eight models with the hyperparameter

combinations yielding the best fit in the validation sample to assess the predictive power

in the one-year testing sample T3 (2003). We keep the models fixed for one year and

replicate this procedure extending the number of years in the training sample by one

year in each iteration, for a total of 18 out-of-sample years (2003 – 2020). Appendix IA2

details the procedure we use to estimate the models, the libraries used for each model

type, and the setup of the hyperparameter optimization.

In cross-sectional asset pricing tests, our main objective is not to forecast time-series

10

Electronic copy available at: https://ssrn.com/abstract=3895984



variation in future returns, but rather cross-sectional return spreads in the testing sample.

To focus on this cross-sectional variation, Han et al. (2021) propose a cross-sectional out-

of-sample R2,

R2
OS;XS = 1−

∑
(i,t)∈T3 [(ri,s,t+1 − r̄i,s,t+1)− (r̂i,s,t+1 − ¯̂ri,s,t+1)]2∑

(i,t)∈T3(ri,s,t+1 − r̄i,s,t+1)2
, (5)

which effectively compares the resulting cross-sectional return spread of a candidate

model, (r̂i,s,t+1 − ¯̂ri,s,t+1), with the realized return spread in the testing sample (ri,s,t+1 −
r̄i,s,t). R2

OS;XS focuses on relative expected returns across options, for which accurate

predictions result in profitable long-short trading strategies.

We test the statistical significance of each model’s forecasts following Clark and West

(2007), by comparing the resulting forecasts with a naive benchmark of always forecasting

an excess return of zero:

CW(j) =
c̄(j)

σ̂
(j)
c

, (6)

where c̄(j) and σ̂
(j)
c denote the time-series average and Newey and West (1987) standard

error of the mean difference between squared forecast errors:

c
(j)
t+1 =

1

nT3

∑
(i,t)∈T3

[
r2
i,s,t+1 − (ê

(j)
i,t+1)2

]
. (7)

Here, nT3 is the number of observations in the testing sample and ê
(j)
i,t+1 are the forecast

errors on option i at time t + 1 for method j. We use 12 lags for the standard errors,

coinciding with the number of months we keep model parameters fixed for each slice of

the testing sample.

Forecast comparison: To compare the forecasts of two methods, we use the modi-

fied Diebold and Mariano (1995) (DM) test, which accounts for potential cross-sectional

dependence in equity option returns. The DM test-statistic for a comparison between

methods 1 and 2 is defined as:

DM(1,2) =
d̄(1,2)

σ̂
(1,2)
d

, (8)

where d̄(1,2) and σ̂
(1,2)
d denote the time-series average and Newey and West (1987) standard
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error of the mean difference between squared forecast errors d(1,2):

d
(1,2)
t+1 =

1

nT3

∑
(i,t)∈T3

[
(ê

(1)
i,t+1)2 − (ê

(2)
i,t+1)2

]
. (9)

We also use correlations as a secondary method to assess how similar the forecasts of

different methods are. Formally, the forecast correlation is defined as:

ρ
(1,2)
t+1 =

Cov(ê
(1)
t+1, ê

(2)
t+1)

σ(ê
(1)
t+1)σ(ê

(2)
t+1)

, (10)

where σ(ê
(1)
t+1) and σ(ê

(2)
t+1) denote the standard deviations of forecast errors for mod-

els 1 and 2, respectively, and Cov(ê
(1)
t+1, ê

(2)
t+1) denotes their covariance. Divergence in

the forecasting power of two methods provides a high-level view on why some methods

outperform.

4. Data and Variable Definitions

We first outline the data sources used and then provide summary statistics for the

option sample and the sample of underlying optionable stocks. Our primary data source is

OptionMetrics IvyDB, which provides historical prices for all U.S. single equity options.

We also use the interpolated volatility surface data from OptionMetrics. Due to the

starting date of this database, our sample covers the period from January 1996 through

December 2020.

Historical prices and accounting data for underlying stocks are obtained from CRSP

and Compustat. We retain only underlyings with share codes 10 or 11 and exchange codes

1, 2, 3, 31, 32, 33; i.e., stocks listed on the NYSE, NYSE American (formerly AMEX)

or NASDAQ. Contrary to previous studies (see Cao et al., 2021), we purposely do not

remove stocks with nominal prices below $5 per share, as Eisdorfer et al. (2020) find that

options trading on stocks with a low nominal price tend to be overpriced. Information

on stock splits and dividend payments is taken from OptionMetrics and cross-checked

with CRSP. We match these databases using the linking algorithm developed by WRDS.

Daily risk-free rates are taken from Kenneth French’s website.10

Option returns are notoriously noisy, especially for underlyings with few outstanding

option contracts and less option trading activity. We therefore rely on a variety of stan-

10https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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dard filters established in the literature to assure the consistency of our analyses (Goyal

and Saretto, 2009; Cao and Han, 2013; Muravyev, 2016; Cao et al., 2021).11 First, we

exclude all options for which OptionMetrics does not provide an implied volatility and

Greeks. Second, we disregard options on stocks which have a dividend scheduled during

the investment period. Third, we eliminate options with zero volume over the last seven

calendar days. Fourth, to avoid any biases due to microstructure noise, we remove op-

tions for which the bid price is zero, the ask is smaller or equal to the bid, the mid price

is below $0.125, or the relative bid-ask-spread is above 50%. As a fifth step, we make

sure that American option bounds are not violated. Finally, we check for the convexity

of option prices per underlying following Bollerslev, Todorov, and Xu (2015). Specifi-

cally, we retain only those observations for which the difference between the prices of two

neighboring call (put) options with strike price K1 < K2 is ≤ 0 (≥ 0).

4.1. Option Returns

Our main variable of interest is the excess return of buying an option that we delta-

hedge on a daily rebalancing schedule. We consider delta-hedged option gains following

Bakshi and Kapadia (2003) as the value of a self-financing portfolio consisting of a long

option, hedged by a position in the underlying such that the portfolio is locally immune

to changes in the stock price. To establish notation, consider the partition Π = {t = t0 <

· · · < tN = t + τ} of the interval from t to t + τ . Assume that the long option position

is hedged discretely N times at each of the dates tn, n = 0, . . . , N − 1 . The discrete

delta-hedged option gain over the period [t, t+ τ ] is then given by:

Π(t, t+ τ) = Vt+τ − Vt −
N−1∑
n=0

∆V,tn × [S(tn+1)− S(tn)]

−
N−1∑
n=0

anrn
365

[V (tn)−∆V,tnS(tn)] , (11)

where Vt denotes the price of the option at time t, rn is the risk-free rate at tn, an is the

number of calendar days between rehedging dates tn and tn+1, which we set to an = 1,

and ∆V,tn is the observed delta of the option. We consider gains for investment horizons of

one calendar month, or until maturity if the option expiration falls within the investment

11To make the investment process as realistic as possible, we apply the filters only at the start of the
trade, and assume that we have to use prevailing market quotes when we unwind the position or regard
the position as worthless.
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month. When an individual stock exhibits large price movements over the investment

horizon, establishing initial delta-neutrality may still expose the investor to substantial

sensitivity to future movements in the underlying stock. Hence, we opt for delta-hedging

at the end of each trading day. Tian and Wu (2021) estimate that one-time delta-hedging

at initiation removes around 70% of the directional risks embedded in options, whereas

daily delta-hedging manages to eliminate upwards of 90% of these risks. Many studies

have found predictability for stock returns (Gu et al., 2020; Freyberger et al., 2020;

Kozak et al., 2020). Instead, our objective is to understand how characteristics relate to

the pricing of higher-order risks embedded in options. Daily delta-hedging enables us to

do just that. Finally, we define option returns following Cao and Han (2013) and Cao

et al. (2021) as:

rt,t+τ =
Π(t, t+ τ)

∆tSt − Vt
. (12)

4.2. Summary Statistics

After the data filters discussed earlier, our sample comprises 4,932,372 options on

7,046 unique underlyings, for a total of 12,129,844 option-month observations for the

period January 1996 - December 2020. Our sample is made up of roughly 53% call and

47% put options. Panel A of Table 1 shows that the average monthly delta-hedged option

return is −0.01%, whereas the median monthly delta-hedged option return is −0.34%.

The average moneyness is 1.03 and the average implied volatility is 47.67%. The average

(median) days to maturity are 193 (113), while every fourth option exhibits a time to

maturity of less than 50 days. As Panels B and C depict, the median monthly delta-

hedged option returns are slightly positive for call options at an average 0.1% per month,

but strongly negative for put options, −0.13%. The median return, however, is negative

for both puts and calls. Panel D in Table 1 shows summary statistics for the years of 1996

through 2002 which are used in the training step of the machine learning models, while

Panel E gives the summary statistics only for the testing subsample from 2003 through

2020. Average monthly delta-hedged option returns tend to be slightly more negative for

the more recent time period. Moreover, implied volatility and moneyness are lower and

days to maturity higher for the testing period from 2003 to 2020.

Table IA5.1 in the Internet Appendix reports summary statistics of the 7,046 stocks

in our sample. Our sample includes on average 1,747 optionable stocks per month, which

comprise 83% of the total market capitalization of the U.S equity market. Moreover,

our sample comprises large stocks with representative volatility, given that the average
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size and volatility percentile within the total stock universe are 72 and 45, respectively.

Finally, the Fama-French 12-industry distribution in our sample is comparable to the

total stock sample, as evident from Panel C in Table IA5.1.

4.3. Option and Equity Characteristics

Throughout this paper, we differentiate between different parts of the time-to-maturity

and moneyness domain of options, which we refer to as “buckets”. Specifically, we sepa-

rately consider predictability for short- and long-term options (≤ vs. > 90 days to ma-

turity), in-the-money (ITM: K/S > 1.1 for puts, K/S < 0.9 for calls), out-of-the-money

(OTM: K/S < 0.9 for puts, K/S < 1.1 for calls) calls and puts, and at-the-money op-

tions (ATM: 0.9 ≤ K/S ≤ 1.1), as well as time-to-maturity and moneyness combinations.

The moneyness and time-to-maturity of option contracts change rapidly. Therefore, it

is unreasonable to assume that flow measures, such as option volume, derived from a

particular option contract over a historical period will be valid for the same contract in

the next month. The defined buckets allow us to compute these flow measures for option

contracts, as we abstract from the impact of changing moneyness and fleeting time-to-

maturity. Table IA5.3 shows that on average, 15 long term options and 11 short term

options belong to each underlying stock, with the bulk located at the current price of the

underlying.

We build a comprehensive set of option-based characteristics, motivated by earlier

studies on the cross-section of option and/or stock returns. Out of the 77 we compute,

42 characteristics operate on the level of the underlying (e.g., the implied shorting fee,

Muravyev, Pearson, and Pollet, 2021), 19 on the level of option buckets (e.g., the Amihud,

2002, illiquidity measure) and 16 on the level of individual option contracts (e.g., the

option’s time-to-maturity). Appendix IA3 provides a detailed description of the option-

based characteristics.

As we are also interested in the performance of stock-based characteristics for pre-

dicting option returns, we include the 94 stock characteristics proposed by Green et al.

(2017). We enrich this set by adding 90 industry dummies, based on the first two dig-

its of the SIC code, four seasonal returns for each underlying (Heston and Sadka, 2008;

Keloharju, Linnainmaa, and Nyberg, 2016), the bear-beta factor proposed by Lu and

Murray (2019), and the previous period’s return. Finally, we add stock-based character-

istics motivated by the literature on the cross-section of option returns, but which are not

included in Green et al. (2017). These comprise default risk (Vasquez and Xiao, 2021),
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Mean Sd 10-Pctl Q1 Median Q3 90-Pctl

Panel A: All Options (N=12,129,844)

Delta-Hedged Return -0.01 5.17 -4.37 -1.94 -0.34 1.29 4.47
Days to Maturity 172.24 179.44 21.0 50.0 113.0 204.0 444.0
Moneyness 1.03 0.31 0.77 0.89 1.0 1.11 1.28
Implied volatility 47.67 25.62 23.46 30.2 41.18 58.0 80.07
Absolute Delta 0.46 0.25 0.13 0.25 0.44 0.66 0.81

Panel B: Call Options (N=6,553,753)

Delta-Hedged Return 0.1 5.62 -4.72 -2.01 -0.29 1.53 5.14
Days to Maturity 176.0 181.95 21.0 50.0 113.0 204.0 448.0
Moneyness 1.06 0.27 0.82 0.93 1.03 1.15 1.32
Implied volatility 47.01 24.26 23.23 29.99 40.98 57.61 78.85
Absolute Delta 0.51 0.24 0.18 0.32 0.52 0.71 0.84

Panel C: Put Options (N=5,576,091)

Delta-Hedged Return -0.13 4.59 -4.0 -1.87 -0.39 1.04 3.7
Days to Maturity 167.82 176.34 21.0 50.0 112.0 204.0 417.0
Moneyness 0.98 0.35 0.72 0.85 0.96 1.06 1.21
Implied volatility 48.46 27.1 23.74 30.44 41.41 58.48 81.6
Absolute Delta 0.4 0.24 0.1 0.19 0.36 0.57 0.77

Panel D: All Options 1996-2002 (N=2,026,636)

Delta-Hedged Return 0.48 7.45 -5.67 -2.28 -0.11 2.39 7.04
Days to Maturity 152.5 174.2 22.0 50.0 108.0 176.0 330.0
Moneyness 1.08 0.44 0.78 0.9 1.02 1.16 1.4
Implied volatility 65.16 29.18 32.17 42.9 60.6 82.14 103.56
Absolute Delta 0.49 0.23 0.18 0.3 0.48 0.68 0.82

Panel E: All Options 2003-2020 (N=10,103,208)

Delta-Hedged Return -0.1 4.58 -4.14 -1.89 -0.37 1.12 3.97
Days to Maturity 176.2 180.21 21.0 50.0 113.0 206.0 448.0
Moneyness 1.01 0.28 0.77 0.89 0.99 1.1 1.26
Implied volatility 44.16 23.31 22.69 28.88 38.71 52.8 71.22
Absolute Delta 0.45 0.25 0.12 0.24 0.44 0.65 0.81

Table 1: Delta-Hedged Option Return Summary Statistics

The table reports descriptive statistics for delta-hedged option returns. Panel A reports the pooled
summary of returns and option characteristics over the period from 1996 to 2020. Delta-hedged option
returns are measured over a period of one calendar month, or until option maturity. Delta-hedging is
performed daily. Days-to-maturity is defined as the number of calendar days until option expiration.
Moneyness is the ratio between the underlying’s stock price and the option’s strike price. Option implied
volatility is provided by OptionMetrics. Absolute delta is the absolute value of the Black-Scholes delta.
Panels B and C depict statistics for call and put options, respectively. Panel D reports summary statistics
for the period 1996 to 2002 which is included in any training set. Panel E reports summary statistics for
the longest out-of-sample period from 2003 to 2020.

the underlying’s close price (Eisdorfer et al., 2020), and realized volatility (Cao, Vasquez,
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Xiao, and Zhan, 2019).12

We are left with a total of 270 characteristics, which can be broadly classified into 12

groups. Accruals, Industry, Investment, Profitability, Quality and Value exclusively in-

clude stock-based characteristics and loosely follow the classification proposed in Jensen,

Kelly, and Pedersen (2021) and Green et al. (2017). Classification group Contract con-

tains five option-based characteristics, the time-to-maturity, moneyness, implied volatil-

ity, and put and call identifier, and thus combines information about the location of the

respective option on the underlying’s implied volatility surface. We therefore assume that

these characteristics play a pivotal role in predicting future option returns as a sort of ref-

erence point, much as the market return in traditional factor models (Fama and French,

1993). Groups Frictions, Illiquidity, Informed Trading, Past Prices and Risk contain

both stock- and option-based information and highlight the predictions’ dependence on

informational frictions. Appendix IA4 provides a detailed list of all 270 characteristics,

their origin from the literature, the primary information source (option- vs. stock-based)

and the feature group we have assigned them to.

5. Predicting Option Returns

5.1. Predictability Comparison

Figure 1 shows the out-of-sample R2 for the pooled testing sample from January 2003

through December 2020 using the nine machine learning methods and two ensembles

outlined in Section 3. Nonlinear models routinely outperform the predictability uncovered

by linear models for option returns. The R2
OS for none of the linear models is significantly

positive, ranging from −0.61% for PCR to −0.12% for Lasso regressions. The Clark and

West (2007) test statistics indicate that none of these predictions outperforms a naive

benchmark of predicting delta-hedged returns of zero.13 Nonlinear models, in contrast,

manage to uncover substantial predictability in single-equity option returns. GBR and

Dart generate the highest out-of-sample R2, above 2.5% for the pooled sample. All but

FFN generate forecasts statistically better than the naive benchmark.

12The 94 stock-characteristics in Green et al. (2017) also include factors shown to have not only
predictive power for the cross-section of individual stocks, but also option returns (e.g., idiosyncratic
volatility as documented by Cao and Han, 2013).

13We find that our results remain intact when the models’ relative performance is evaluated against
naive benchmarks predicting zero excess returns or the historical mean, either for the entire sample or
subsamples by the respective bucket to which an option belongs at the time of the investment.
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Fig. 1. R2
OS Model Comparison

The figure shows out-of-sample R2
OS as defined in Equation (4) for the nine models considered, as well

as the linear (L-En) and nonlinear (N-En) ensemble methods. We separately document the predictive
power for all options and for calls and puts. ***, **, * below the bars denotes statistical significance at
the 0.1%, 1% and 5% level as defined in Equation (7) for the sample of “all” options. The testing sample
spans the years 2003 through 2020.

In addition to the full sample, we examine predictability for future call and put option

returns separately. For most models we find that forecasts of future put returns yield

higher R2
OS. The best call and put return predictions are both made by Dart, with R2

OS >

2.5%, the worst call predictions are generated by PLS, and the worst put predictions are

made by PCR. Linear dimensionality-reduction regressions do not appear to adequately

uncover an adequate relationship between characteristics and future returns. While FFN

was the most promising model in Gu et al. (2020) for stock returns, we find that it

uncovers low predictability in the case of delta-hedged option returns. Given that FFN

is the method with the highest potential complexity, this suggests that this complex

structure does not generalize well to the testing sample of option returns. In contrast, tree-

based methods tend to outperform, suggesting that histogram-based estimation including

nonlinear interactions trumps model complexity in this market.

Ensembles have been shown to improve the accuracy and consistency of the predictions
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Ridge Lasso ENet PCR PLS L-En GBR RF Dart FFN N-En
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Fig. 2. R2
OS;XS Model Comparison

The figure shows cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) for the nine models

considered, as well as the linear (L-En) and nonlinear (N-En) ensemble methods. We separately document
the predictive power for all options and for calls and puts. ***, **, * below the bars denotes statistical
significance at the 0.1%, 1% and 5% level as defined in Equation (7) for the sample of “all” options. The
testing sample spans the years 2003 through 2020.

and are a staple in modern machine learning estimation (e.g., Krizhevsky, Sutskever, and

Hinton, 2012; Lakshminarayanan, Pritzel, and Blundell, 2016).14 The linear ensemble

L-En produces significantly better forecasts than any of the individual linear models,

notably managing to produce positive R2
OS for call and put returns. The predictability

uncovered is comparable to that of FFN, but also not statistically significant. The level of

predictability at roughly 0.8% is about twice as high as the levels of predictability of stock

returns found by Gu et al. (2020). Within the class of nonlinear methods, Dart tends to

outperform N-En for the full sample, as well as separately for puts and calls. Just as all

tree-based methods, the resulting predictions comfortably beat the naive benchmark of

zero excess returns.

We are ultimately interested in how far the models uncover cross-sectional return

spreads in our option sample. For this, Figure 2 compares the cross-sectional R2
OS;XS de-

14Steel (2020) discusses its uses in economics.
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fined in Equation (5). Interestingly, while none of the individual linear models generated

predictability on the full sample, especially penalized regressions are able to generate

realistic return spreads. For Lasso and ENet these are even statistically significant at the

5% and 1% level, respectively. The cross-sectional pricing power of all nonlinear models

is highly significant, and surprisingly FFN manages to produce R2
OS;XS comparable to

the tree-based methods, despite failing to adequately predict the average level of future

returns. This exercise clearly highlights the benefits of using ensemble models, in that

the cross-sectional predictive power increases both for L-En and N-En. The nonlinear

ensemble generates the highest cross-sectional predictability for all subsamples considered

with an R2
OS;XS of 3.3%.

Most studies up-to-date overlook the ability to zoom in on the predictive power of the

models considered and provide an intuition of how stable the resulting predictions are.

The focus mostly lies on pooled out-of-sample predictability as in Figure 1 and Figure 2.

Instead, we also show the dispersion of R2
OS and R2

OS;XS over time. While the pooled

approach weights the predictions of each year by the number of option-month observations

contained, we now provide estimates of the predictive power per year, which allows us

to investigate the stability of the forecasts over time. Stable predictability is imperative

for investors who wish to use the model forecasts in their investment decision-making

process.

The upper panel of Figure 3 adds three main points to the pooled R2
OS consideration

above. First, the predictive power of all models fluctuates significantly over time. Linear

models produce the largest dispersion, with the possibility of very large R2. Second, most

models exert an interquartile range of their predictive power that is either symmetric

around the median, or more exposed to the downside. A notable exception from this

is Dart, which manages to produce the best predictability most consistently, with an

interquartile range of 1%−4.4%. Leveraging the informational content uncovered by Dart

may thus grant large benefits to investors. Following this intuition, we lastly find that

ensemble models produce more stable forecasts. The minimum to maximum predictability

for L-En ranges from −8% to +3.9% and for N-En between −2.7% and +5.7%. The

forecasts of N-En are the most stable over time, producing significant predictive power

for all years in the testing sample. Cross-sectional predictability is much less disperse

(lower panel of Figure 3) and is generally increasing in the model complexity and the

ability to model nonlinear interaction effects between characteristics. N-En is once more

the most stable model with the highest median and mean level of predictability over time.

Forecast comparison. We now turn to Diebold and Mariano (1995) tests to itera-
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Fig. 3. Time-Series Dispersion of R2
OS and R2

OS;XS

The figure shows the dispersion of annual out-of-sample R2 defined in Equation (4) in the upper panel
and cross-sectional out-of-sample R2 defined in Equation (5) in the lower panel. We show the 5th and
95th percentile R2 in the whiskers, the interquartile range in the boxes, as well as the mean (circles) and
median (bar).

tively compare the forecasts of two competing models following Equation (8). Statistical

significance at the 1% (5%) level is highlighted in light blue (blue). The first row of Ta-

ble 2 shows that only L-En manages to statistically outperform the predictions made by

Ridge regressions within the class of linear models. In comparison, all nonlinear models

manage to beat the predictions by Ridge. Overall we find that the forecasts by L-En are

significantly better than the forecasts any of the other linear models produce, highlighting

the necessity to adequately pool the forecasts by multiple methods.

Within the class of nonlinear models, only GBR manages to outperform L-En com-

fortably with a t-statistic of 2.09. Interestingly, the forecasts of GBR and Dart, which

have produced the highest single-model predictability, are indistinguishable from one an-
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Panel A: Diebold and Mariano (1995) Forecast Comparison

Lasso ENet PCR PLS L-En GBR RF Dart FFN N-En

Ridge 1.76 0.27 −0.52 −0.56 3.64 3.12 2.11 2.52 3.24 3.76
Lasso −1.24 −0.94 −0.98 2.13 2.31 1.42 1.93 1.85 2.79
ENet −0.48 −0.51 1.94 2.15 1.43 1.84 2.90 2.49
PCR −0.19 2.60 7.17 7.03 5.49 1.59 8.08
PLS 2.61 7.78 8.02 5.71 1.61 8.64
L-En 2.09 0.79 1.62 −0.42 2.86
GBR -4.40 0.40 −1.60 1.04
RF 2.52 −0.72 6.27
Dart −1.34 0.05
FFN 1.94

Panel B: Forecast Correlation

Lasso ENet PCR PLS L-En GBR RF Dart FFN N-En

Ridge 0.84 0.83 −0.10 0.53 0.91 0.51 0.44 0.50 0.78 0.64
Lasso 0.95 −0.14 0.51 0.92 0.45 0.41 0.44 0.79 0.59
ENet −0.16 0.47 0.90 0.42 0.39 0.40 0.79 0.57
PCR 0.18 0.02 0.12 0.23 0.10 −0.06 0.10
PLS 0.75 0.52 0.53 0.51 0.57 0.60
L-En 0.56 0.53 0.55 0.83 0.70
GBR 0.86 0.92 0.61 0.95
RF 0.79 0.54 0.88
Dart 0.61 0.94
FFN 0.79

Table 2: Forecast Comparison

Panel A of the table shows Diebold and Mariano (1995) test statistics following Equation (8) for the
nine models and two ensembles considered in the paper. A positive number indicates that the model
in the column outperforms the row model. If it is highlighted in light blue (blue), this outperformance
is statistically significant at the 1% level (5% level). Panel B shows forecast correlations defined in
Equation (10). Here, highlighting in light blue (blue) denotes large values with a cutoff at 90% (70%).

other. FFN manages to beat Ridge and ENet, but none of the nonlinear models.15 The

nonlinear ensemble N-En produces forecasts that beat any of the other models but Dart

and GBR, which are its most vital inputs. Comparing the performance of L-En and

N-En, we find that the forecasts of the latter are more informative with a t-statistic of

2.86. While the forecasts of GBR and Dart do not manage to statistically beat those of

FFN, N-En manages to do so at the 10% level (t-stat = 1.94).

The forecast correlation analysis in Panel B of Table 2 confirms these insights. First,

15The Diebold and Mariano (1995) test provides a statistical measure of the differences in the total
forecast errors. Comparing cross-sectional forecast errors in Appendix IA6.1 shows that FFN manages
to outperform all linear models, as well as the linear ensemble, in this setting. Furthermore, all nonlinear
models manage to beat L-En in uncovering cross-sectional dispersion in option returns.
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penalized linear regression methods yield similar predictions, which is expected given

that Lasso and Ridge are special cases of ENet. Notably, L-En produces forecasts highly

correlated to either of these methods (ρ > 90%), as does FFN (ρ > 70%), suggesting that

the underlying process proposed by FFN is quite similar to a regularized linear function.

Second, tree-based methods are a class of their own, showing correlations of ρ > 70% only

among themselves. Given their unique setup of identifying quantile splits in the input

characteristics to relate to option returns, this is not surprising. At the same time, these

methods, especially boosted tree-based methods (GBR and Dart), outperform all other

models. Consequently, predictions by N-En share many of their properties (ρ > 90%).

However, the ensemble predictions are also highly correlated to the two other nonlinear

methods with ρN-En,FFN = 79% and ρN-En,RF = 88%.

Impact of Nonlinearities. The results highlight the usefulness of forming forecast

ensembles of many models. Therefore, from now on, we will compare the linear (L-En)

and nonlinear (N-En) ensemble methods to understand the implications of nonlinear

interaction effects.
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Fig. 4. Comparing Linear and Nonlinear Ensembles

The left panel of the figure shows monthly R2
OS for the testing sample from 2003 through 2020 for

the linear (L-En) and nonlinear (N-En) ensembles. The right panel compares the two by showing the
resulting R2

OS for L-En on the x-axis and for N-En and the y axis. The green-shaded area represents
a relative outperformance in terms of predictability for N-En, while the red-shaded area represents the
opposite. The five red circles represent the Coronavirus selloff from December 2019 through April 2020.

In this section, we highlight the usefulness of modeling nonlinear interaction effects
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between option characteristics. The left panel of Figure 4 compares the monthly R2
OS for

N-En in dark blue and for L-En in light blue. The figure provides multiple insights: First,

both ensembles tend to beat a naive benchmark of predicting zero delta-hedged returns

in most months. Second, N-En is less prone to experience predictability crashes. While

L-En does a poor job of predicting future option returns during and after turbulent times

(2008-2012 for example), N-En has predicted returns much more consistently. Third,

for N-En, the predictive power has stayed roughly constant over time, confirming not

only that nonlinear models leverage the information embedded in option characteristics,

but also that the resulting predictability patterns are highly persistent over time.16 At

the same time, this suggests that our methods pick up more than just plain mispricing,

especially in recent years, under the assumption that modern financial markets, and in

particular the options market, has become informationally more efficient.

The panel on the right shows a scatter plot of the resulting R2
OS of L-En on the x-axis

and N-En on the y-axis. The green-shaded area represents a relative outperformance

of the nonlinear ensemble, whereas the red-shaded area represents the opposite. For

71.2% of the months in our sample, we find that N-En outperforms L-En and if so, quite

comfortably. In the figure, we have also highlighted in red circles the period of December

2019 through April 2020, which are the months surrounding the Coronavirus selloff in

February and March 2020. Nonlinear ensembles were better able to deal with this huge

exogenous shock, beating L-En in all of the five months. The R2
OS for N-En dips slightly

below zero only in January and reaches pre-crisis levels of 3 to 6% in March. While

the pandemic-driven selloff constituted a large exogenous shock to financial markets,

the relationship between option characteristics and future returns quickly went back to

normalcy after the initial reaction. This speaks in favor of using nonlinear machine

learning methods to identify persistent predictability patterns in the options market,

especially given that the sample we used to train the models to uncover predictability

patterns in option returns during the Coronavirus selloff ended in December of 2017.

In Figure IA6.1 we repeat the exercise using the cross-sectional out-of-sample R2
OS;XS

defined in Equation (5). N-En beats the linear ensemble in 85.6% of the months and

predictability does not dip below 1.5% of variation of return spreads explained during

the Coronavirus selloff.

16We keep increasing the training period by one year each time we roll forward, such that no historical
information is ever discarded.

24

Electronic copy available at: https://ssrn.com/abstract=3895984



5.2. Machine Learning Portfolios

To gauge if the predictability of machine learning methods is also economically sig-

nificant, we follow Gu et al. (2020) and form portfolios using machine learning forecasts.

Specifically, each month, we sort individual equity options into 10 decile portfolios based

on the machine learning models’ (L-En and N-En) expected return forecasts. Then, we

calculate the one-month-ahead average realized return of individual equity options in

each decile. Finally, we compute the average long-short portfolio return of a zero-net

investment portfolio by buying options with the highest expected return forecast (decile

10) and financing this investment by writing options with the lowest expected return

forecast (decile 1).

L-En N-En
Pred Avg SD SR Pred Avg SD SR N vs. L

Lo −1.223 −1.395 1.646 −0.848 −1.720 −1.841 1.950 −0.944 ***
2 −0.724 −0.678 1.847 −0.367 −0.715 −0.650 1.848 −0.352
3 −0.492 −0.379 1.851 −0.205 −0.401 −0.350 1.741 −0.201
4 −0.322 −0.220 1.845 −0.119 −0.224 −0.197 1.655 −0.119
5 −0.178 −0.106 1.829 −0.058 −0.099 −0.093 1.644 −0.057
6 −0.047 −0.035 1.795 −0.019 0.007 −0.029 1.630 −0.018
7 0.083 0.048 1.798 0.027 0.111 0.042 1.662 0.025
8 0.220 0.114 1.794 0.064 0.229 0.139 1.767 0.078
9 0.387 0.220 1.807 0.122 0.394 0.286 1.923 0.149
Hi 0.711 0.522 1.936 0.270 0.835 0.786 2.286 0.344

H-L 1.934 1.917 1.237 1.550 2.555 2.627 1.274 2.062 ***
(14.19) (6.54) (15.79) (8.14)

Table 3: Trading on Machine Learning Predictions

The table shows the returns to option portfolios sorted by the predictions made by the linear (L-En) and
nonlinear ensemble (N-En) methods. Pred denotes the average predicted return within the respective
portfolio, Avg the average realized return, SD the standard deviation of realized returns and finally
SR the realized Sharpe ratio. All values are given per month. The last column (N vs. L) gives the
significance of comparing the mean realized returns for N-En and L-En. ***, **, * correspond to N-En
beating L-En significantly at the 1%, 5%, 10% level, respectively.

Table 3 shows the average predicted and one-month-ahead realized portfolio returns.

For both ensemble classes, the average predictions are comparable to the returns that

actually realize, but the predicted and realized return spreads between the lowest and

highest predicted return portfolio is much greater for N-En. The per-month realized

high-minus-low return generated by N-En for the testing sample of 2003 through 2020

is 2.63% with a Sharpe ratio of 2.06. The realized payoff is also close to the predictions

made by N-En (2.55% per month, on average). To validate the usefulness of allowing for
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nonlinearities when predicting future option returns, we perform a comparison of realized

return spreads in the last column of Table 3, which highlights that N-En is better than

L-En at identifying particularly overpriced options. This translates into the large H-L

spread between the two models based on the difference-in-differences (diff-in-diff) test

results; i.e., the diff-in-diff return spread generated by N-En vs. L-En is economically

and statistically significant at 0.71% (= 2.63% – 1.92%) per month, showing that the

cross-sectional variations in option returns are more accurately captured by the nonlinear

models.17

Lo 2 3 4 5 6 7 8 9 Hi

NU 634.65 797.43 820.74 808.51 794.23 784.62 769.00 738.25 672.45 519.95
m 1.03 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.05
ttm 124.66 156.54 172.37 178.87 182.27 184.51 184.72 185.19 187.54 205.52
r̂ > 0 0.31 0.35 0.38 0.39 0.41 0.42 0.44 0.45 0.47 0.52
s(r) = s(r̂) 0.69 0.65 0.62 0.58 0.55 0.53 0.48 0.47 0.48 0.52
% Calls 0.43 0.42 0.44 0.46 0.47 0.51 0.55 0.60 0.65 0.75
Spread 0.20 0.16 0.13 0.12 0.11 0.11 0.11 0.12 0.13 0.15
OI 0.06 0.08 0.10 0.12 0.12 0.12 0.11 0.11 0.09 0.08
delta 0.02 0.02 0.03 0.03 0.03 0.05 0.08 0.13 0.17 0.27
gamma 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
vega 0.15 0.16 0.18 0.19 0.20 0.20 0.20 0.20 0.20 0.21
theta −0.31 −0.19 −0.15 −0.13 −0.12 −0.11 −0.11 −0.11 −0.12 −0.12

Table 4: N-En Portfolio Decomposition

The table shows summary statistics for the ten machine learning portfolios following the nonlinear
ensemble N-En. All measures are averaged over time. NU denotes the number of individual stocks
underlying the options in the portfolios, m the moneyness, ttm the time-to-maturity. r̂ > 0 denotes the
share of positive returns in the portfolio and s(r) = s(r̂) the share for which N-En correctly predicted
the realized return’s sign. % Calls is the share of call options in the portfolio, Spread the average option
bid-ask spread, OI the relative open interest and delta, gamma, vega, and theta the respective option
Greeks. gamma is expressed for a 1% move in the underlying stock (gamma× S

100 ) and vega and theta
in terms of the underlying stock price ( x

S for x ∈ [vega, theta]).

Table 4 provides summary statistics for the decile portfolios based on the nonlinear

ensemble N-En. The high and low portfolio tend to include options from NU = 520 and

NU = 634 underlyings, respectively. The portfolios use options from the least number of

individual stocks, but still rely on average on options from about a third of the stocks

included in the sample. While we find little change in the average moneyness of the

included options, the Low portfolio includes more short-term and fewer call options (%

Calls = 0.43), while the High portfolio includes more long-term call options (% Calls

17We have repeated this exercise using dollar open interest of the respective options as weights. The
results are in Table IA7.1 and confirm the findings discussed here.
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= 0.75). The relative bid ask spreads of the options are also highest for the extreme

portfolios, while the outstanding open interest is lowest for options in these portfolios.

The delta (of the unhedged option), theta and vega are increasing in the expected option

return, while gamma is roughly comparable across portfolios. Considering a long position

of the respective option portfolios, we find that the probability of a positive payoff (r̂ > 0)

increases monotonically in the expected return. While only 31% of the options included

in Low have a positive return in month t+ 1, 52% of the options in High have. Focusing

on whether the predicted return direction is correct, s(r) = s(r̂), we find it to be highest

for Low with 69% of the return directions correctly predicted. The ratio first decreases

and then starts to increase once more for portfolios 9 and 10. For portfolio 10 (High),

it stands at 52%. Figure IA7.1 to Figure IA7.3 in the Online Appendix provide a visual

representation of the portfolio decomposition, split by the put and call contracts included.

Figure IA7.4 shows the relative share of call options in the machine learning portfolios

for each year in our testing sample. We find that it increased after the financial crisis.

Over time, the call share of the High portfolio has decreased, while it stayed roughly

constant for Low. Another interesting aspect of the machine learning portfolios is to

analyze in how far N-En places all options trading on a given stock in the same bucket,

or whether it distinguishes between over- and under-priced contracts within a single

underlying. For this, Figure IA7.5 shows the share of options of a given underlying that

ended up in the same portfolio. We find that this measure is highest for the High and

Low portfolios, but that it is mostly below 50%. This suggests that N-En does not simply

identify underlying stocks for which all options are considered mispriced, but also picks

up on the variation within the option chain of a given stock.

How persistent is our trading strategy, i.e., how likely is it that securities selected

in portfolio i at month t remain in the same portfolio at month t + 1? While we can-

not answer this question for individual option contracts, given that their moneyness and

time-to-maturity potentially change rapidly, we can provide indicative evidence for this

on the options-bucket level (see Section 4 for a definition). We focus on how the port-

folio mode for all stock-bucket combinations in our sample changes from one month to

another.18 With this, we can understand more about the persistence of the machine

learning predictions. Figure IA7.6 provides the results to this exercise: we first note that

the diagonal is the lightest-shaded area, highlighting that transitioning from one portfolio

to the same or a neighboring is most likely. Second, the lightest areas overall are at the

18That is, each stock-bucket combination is assigned the portfolio that most of the options in that
combination fall into. Results remain intact when we consider the average portfolio instead.
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High and especially the Low portfolio. If options of a given stock-bucket combination are

classified as being highly overpriced (Low portfolio), they tend to stay in this portfolio

in the next months. The same applies to a lesser degree for the most underpriced stocks

(High portfolio).

In a next step, we investigate in how far the profitability of our machine learning

portfolios changes with the state of the economy, and whether N-En manages to beat

L-En regardless of this state. The results in Table IA7.2 shows that payoffs are generally

amplified during bad economic states and that N-En manages to beat L-En in all market

phases. This holds for a wide range of measures which approximate the economic state.

Table IA7.3 in the Appendix provides the H-L results for different option buckets.

Predictability is concentrated in short-term options, for which we also find the high-

est payoffs when following the investments proposed by our machine learning models.

Throughout all option buckets we find higher raw (Avg) and risk-adjusted (SR) returns

for N-En than for L-En. This difference is consistently, highly statistically significant.

5.2.1. Risk Attribution

One possible explanation for these results is that the machine learning models are

best at predicting the most risky option positions, which should translate to higher future

realized returns. To understand whether this is the case, we compute risk-adjusted returns

for the H-L portfolios for N-En, either for the pooled sample of all options, or split by

option buckets. We consider a wide range of candidate models, which have been proposed

by earlier studies to explain the returns of a variety of financial instruments. To date,

we are still lacking a concise factor model for option returns. Therefore, we resort to

the most prominent models from other asset classes, including the CAPM, the Fama and

French (2015) five factor model enhanced by the momentum factor of Carhart (1997)

(FF6, Fama and French, 2018) and additionally by the liquidity factor of Pástor and

Stambaugh (2003) (FF6+PS), a model using the Agarwal and Naik (2004) option-market

factors (AN), a model with the intermediary leverage bearing capacity of Grünthaler et al.

(2020), and finally the factor model on optionable stocks proposed by Bali and Murray

(2020) (BM).

The results are provided in Table 5. Raw and risk-adjusted returns for all option

types are virtually the same. The risk exposure picked up by the candidate models does

not suffice to explain the return spreads generated by the nonlinear machine learning

methods.
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CAPM FF6 FF6+PS

Full Sample 2.715 (16.64) 2.638 (22.38) 2.636 (21.31)

Buckets

τ ≤ 90

atm 1.961 (21.23) 1.916 (27.75) 1.915 (27.25)
itm C 2.359 (16.26) 2.290 (19.10) 2.289 (18.85)
itm P 2.196 (10.48) 2.147 (10.52) 2.148 (10.61)
otm C 4.025 (13.95) 3.961 (18.36) 3.957 (17.92)
otm P 4.416 (17.76) 4.322 (19.27) 4.322 (19.08)

τ > 90

atm 1.963 (15.77) 1.895 (22.42) 1.893 (21.96)
itm C 2.841 (13.80) 2.754 (16.18) 2.754 (16.20)
itm P 1.360 (11.51) 1.343 (14.19) 1.341 (13.52)
otm C 3.506 (13.62) 3.445 (17.48) 3.442 (17.09)
otm P 2.776 (14.44) 2.728 (15.76) 2.724 (14.96)

AN BM LBC

Full Sample 2.629 (18.27) 2.513 (31.28) 2.627 (16.84)

Buckets

τ ≤ 90

atm 1.911 (23.67) 1.887 (29.40) 1.935 (23.70)
itm C 2.238 (17.49) 2.174 (18.33) 2.277 (19.38)
itm P 2.158 (11.86) 1.984 (8.77) 2.074 (10.33)
otm C 3.881 (16.35) 3.775 (15.78) 3.816 (15.13)
otm P 4.448 (18.27) 4.058 (21.85) 4.300 (17.33)

τ > 90

atm 1.881 (14.79) 1.808 (20.24) 1.939 (15.41)
itm C 2.766 (12.91) 2.557 (15.27) 2.797 (13.14)
itm P 1.263 (15.12) 1.188 (12.10) 1.256 (13.84)
otm C 3.419 (13.09) 3.274 (16.77) 3.382 (12.31)
otm P 2.821 (14.45) 2.690 (20.63) 2.859 (14.82)

Table 5: Common Factor Models and Machine Learning Predictions

The table shows the risk-adjusted returns of the high-minus-low portfolio following the predictions by
N-En using risk factor models proposed in the literature. Risk-adjusted returns are provided for the
CAPM, the Fama and French (2015) 5-factor model plus momentum (Carhart, 1997), FF6; the Fama
and French (2015) 5-factor model plus momentum and the liquidity factor of Pástor and Stambaugh
(2003), FF6+PS; the model following Agarwal and Naik (2004) including the returns of at-the-money
and out-of-the-money index options plus the market factor, AN; the model for optionable stocks by Bali
and Murray (2020), including the spread between implied and realized volatility by Bali and Hovakimian
(2009), its difference through time by An et al. (2014), the call-minus-put implied volatility spread by
Cremers and Weinbaum (2010), and the market factor, BM; and a model including the market factor
and the leverage bearing capacity of financial intermediaries proposed in Grünthaler et al. (2020), LBC.
We also provide the information for option buckets defined in Section 4.
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5.2.2. Impact of Transaction Costs

So far we have assumed that the investor can buy and sell each option at mid-point

between bid and ask – that is with zero effective spreads. Prior research has shown that

transaction costs in option markets can be large (Ofek et al., 2004). We now turn to

the impact of trading at different transaction prices by changing the ratio of effective to

quoted spreads. For that, Table 6 shows the full-sample payoffs to the high-minus-low

trading strategy assuming that investors have to pay an effective spread of 15% or 25%

of the quoted bid-ask spread. As a simple example, with an effective spread of 15%, we

would buy an option with bid = $10; ask = $15 at $12.875 and sell it at $12.125. We

consider H-L payoffs, such that we go long options in decile 10 and short options in decile

1. For options that expire after our holding period of one month, we consider the effective

spreads for trading in and out of the position, for options that expire within the holding

period, we only do so for engaging into the position and cash in the payoff at maturity.

Eff. Spread = 15 Eff. Spread = 25

H-L t SR H-L t SR

Full Sample 1.334 (10.97) 1.171 0.474 (4.41) 0.431

Buckets

τ ≤ 90

atm 1.381 (17.49) 1.834 1.007 (13.92) 1.384
itm C 1.198 (10.46) 1.073 0.437 (3.29) 0.381
itm P 1.564 (9.50) 1.284 1.101 (8.27) 0.950
otm C 2.836 (10.22) 1.118 2.057 (7.65) 0.824
otm P 3.285 (12.18) 1.214 2.725 (10.36) 1.025

τ > 90

atm 0.604 (6.31) 0.675 −0.291 (−2.44) −0.311
itm C 0.132 (0.94) 0.110 −1.624 (−6.50) −1.072
itm P 0.218 (2.56) 0.232 −0.569 (−4.75) −0.556
otm C 1.051 (5.33) 0.575 −0.544 (−2.61) −0.295
otm P 1.153 (6.69) 0.655 0.142 (0.79) 0.080

Table 6: Machine Learning Predictions and Effective Spreads

The table shows the realized returns of the high-minus-low portfolio following the predictions by N-En
after accounting for transaction costs through effective spreads, which we define as a fraction of the
quoted spreads provided OptionMetrics. H-L denotes the average returns controlling for spreads of 15%
and 25%, t denotes the corresponding t-statistic and SR the resulting Sharpe ratio. We also provide the
information for option buckets as defined in Section 4.

The strategy using all available option contracts remains highly profitable for 15%

and 25% effective spreads. The average monthly returns are 1.33% or 0.47% (t-statistic:

10.97 vs. 4.41) with Sharpe ratios of 1.17 and 0.43. If we increase the effective spreads

further to 50%, the unconditional strategy fails to generate positive returns. Consistent

30

Electronic copy available at: https://ssrn.com/abstract=3895984



0

1

2

3

4

5

2004 2006 2008 2010 2012 2014 2016 2018 2020

0

5

10

15

20

spread=0 spread=15 spread=25

Fig. 5. Rolling One-Year Returns and Effective Spreads

The upper panel in this figure shows rolling cumulative returns over twelve months for the high-minus-
low portfolio following the predictions made by N-En using all available option contracts. The lower
panel shows corresponding rolling Newey and West (1987) t-statistics with a lag of twelve months. We
compare the resulting profitability for zero effective spreads (trading at the mid price), as well as effective
spreads of 15% and 25%.

with the evidence for the various options under the assumption of zero effective spreads in

Table IA7.3, the profitability of short-term options is generally amplified. For both levels

of effective spreads, short-term options generate significantly positive returns, which are

the highest in absolute terms for out-of-the-money options, and highest in risk-adjusted

terms for at-the-money options (SR: 1.78 and 1.34).19 Contrarily, all returns for long-term

options turn insignificant or even negative for the effective spreads of 25%. While long-

term options make up a larger portion of our sample, their value seems to be distorted by

amplified spreads, such that the same signals that generate significantly positive returns

for short-term options fail to do so for options with maturity of more than three months.

The evidence in Table 6 deals with average returns and profitability of the resulting

trading strategies for the entire sample of 215 months. To understand how the predictabil-

ity we uncover through nonlinear machine learning methods is distributed over time, we

19For otm short-term puts, we retain significant profitability even at 50% effective spreads, for atm
short-term options and otm calls payoffs are positive, but not significantly different from zero.
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show rolling returns for the last 12 months in the upper panel of Figure 5. The lower

panel depicts the statistical significance, as measured by rolling Newey and West (1987)

t-statistics with 12 lags. The high-minus-low portfolio shows the largest payoffs during

turbulent times. Annual returns are amplified during and after the financial crisis in

2008-2010, remain high surrounding the Taper Tantrum in 2013 and increase once more

during the Coronavirus selloff at the beginning of 2020. The realized returns are highly

significant at all times, with t-statistics regularly around or above 10. Assuming effective

spreads of 15% significantly lowers the generated returns, but they remain consistently

positive over time. The same applies when increasing effective spreads to 25%, with the

notable exception of the years 2016 to 2019, where returns are zero or turn slightly neg-

ative. Whereas returns are significantly different from zero for effective spreads of 15%

throughout the whole sample period, the same is only observed for the beginning of the

sample in case spreads are 25%.

We provide the same results split by option buckets in Figure IA7.8 (t-statistics in

Figure IA7.9). In contrast to using all available option contracts, investing in short-

term at-the-money and out-of-the-money as well as in-the-money put options generates

positive returns in all months and for both 15% and 25% effective spreads, which are

statistically significant in most months. Long-term options tend to suffer more severely

from imposing transaction costs, but tend to survive 15% effective spreads for the first

half of our sample. Muravyev and Pearson (2020) argue that effective spreads are much

lower than the ones we measure here using OptionMetrics’ end-of-day quoted spreads,

since investors have the ability to time trades over the entire trading day. Using high-

frequency data on single stock options, the authors find that effective transaction costs are

about a quarter smaller than their conventional estimates. Moreover, consider the impact

of execution timing, the reduction can be increased to more than 60%. We are therefore

confident that the signals N-En generates are valuable and require further discussions on

the sources of these highly profitable trading strategies.

5.3. Which Characteristics Matter?

We next analyze the importance of option characteristics groups. Since we use a

large number of characteristics (a total of 270) in our estimation, we look at the relative

importance of various characteristics groups, following Lundberg and Lee (2017).

Optimally, we would re-estimate the model after excluding the characteristics in each

group sequentially. This approach, however, is infeasible, given the large computational
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Fig. 6. Feature Group Importance for Nonlinear Forecast Ensemble

The figure shows the feature group importance for the twelve feature groups defined in Appendix IA4
for the nonlinear (N-En) ensemble. We measure the importance using SHAP values following Lundberg
and Lee (2017). The group importance is the sum of the resulting SHAP values for all features included
in a given group. The values are scaled such that they sum to one. The bars represent the mean feature
group importance for the entire testing sample, the dots the dispersion of the group importance for the
months in the testing sample. The abbreviations used: Acc=Accruals, Prof=Profitability, Q=Quality,
Inv=Investment, Ill=Illiquidity, Info=Informed Trading, Val=Value, C=Contract, Past=Past Prices,
Fric=Frictions, Ind=Industry.

burden required by multiple estimations of the models considered.20 Instead, Lundberg

and Lee (2017) propose the use of SHAPs (SHapley Additive exPlanations), which ap-

proximate the effect of this feature exclusion and are based on cooperative game theory.21

The relative feature group importance for N-En is provided in Figure 6, in which the

groups are sorted by their total importance over the entire testing sample. It is directly

apparent that contract-based characteristics are the most important predictors of future

option returns. Knowing where an option lies on the underlying’s implied volatility

surface and knowing where that implied volatility surface lies relative to the market is

20We use this approach in Section 5.4 and re-estimate each model for three subsamples of the input
characteristics.

21The authors have created a Python package: https://github.com/slundberg/shap.
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essential when making option return forecasts. Measures about illiquidity and risk are

the next-most important predictors. Included are, for example, risk-neutral moments

of the underlying, proxies for variance risks, option Greeks, and bid-ask spreads of the

underlying and the option itself. Of secondary importance, but nevertheless aiding in the

prediction process for N-En are characteristics in the groups Past Prices, which includes

measures of stock and option momentum,22 Quality and Informed Trading. The dots

in the figure represent the group importance during each month in the testing sample.

On some occasions we find that illiquidity-based features are the most important. For

most months, however, it is the group of contract-based information that influences the

resulting predictions the most. We want to highlight a last observation from this figure:

N-En relies much more on information drawn from options to make its predictions. In

fact, the impact of most groups comprised solely of stock characteristics is very small in

comparison.

In line with this, Figure 7 shows the 10 most important characteristics, along with the

dispersion of their relative importance across the testing sample. The most influential

characteristic by far is the implied volatility of the option, followed by the bid-ask spread

of the underlying stock. Industry momentum (indmom), the stock’s realized variance

(rv), and the variance risk premium (ivrv) are also highly important. The reliance also

on stock-based characteristics corroborates the findings by Cao et al. (2019).

Figure IA8.1 shows the rank of the importance of each feature group for N-En over

the 18 years in our testing sample, with rank 1 denoting the lowest and rank 12 the

highest importance. We find that contract-based characteristics are the most important

in each year, with risk- and illiquidity-based characteristics, as well as information about

past prices routinely ending up on the second or third highest rank. Illiquidity has played

the second largest role in impacting N-En’s predictions after the financial crisis, whereas

risk-based information did so before and during 2008.

5.4. Impact of the Information Set

The previous section indicates that option-based characteristics and especially the

option’s location on the underlying’s implied volatility surface are of high importance.

The signals derived from these characteristics using modern machine learning techniques

translate not only into option return predictability, but also highly profitable trading

strategies. However, what happens if we assume that the investor restricts her attention

22Approximated by the characteristic iv rank.
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Fig. 7. Most Important Features

The figure shows the ten most influential features for the predictions of the nonlinear ensemble (N-En)
following the importance using SHAP values (Lundberg and Lee, 2017). The values are scaled such that
they sum to one across all 270 characteristics. The bars represent the mean feature group importance for
the entire testing sample, the dots the dispersion of the group importance for the months in the testing
sample.

to only a subset of characteristics? Likewise, how well will her predictions turn out if

she chooses to consider only stock-based characteristics? To answer these questions, we

re-estimate each model using only stock-based characteristics (S), option-based character-

istics (O), or only those characteristics operating on the bucket- or contract-level (B+C)

and contrast the resulting predictability with that of the full information set. Figure 8

provides the resulting full-sample R2
OS values.

Using all available information produces the highest R2
OS consistent with the idea

that more information leads to better forecasts if the models used are sufficiently able

to capture this information. Less weight is put on uninformative characteristics and

important nonlinear interactions between them are taken advantage of. Restricting to

only option-based information (O) comes in as the second place. The benefit of adding

stock-based to the 77 option-based characteristics is substantial, given that the R2
OS drops
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Fig. 8. Restricting the Information Set for N-En

The figure shows the out-of-sample R2 defined in Equation (4) for N-En with restricted access to the
full set of characteristics. The full model is shown in the left bar for reference, and is compared with
models using all option-based information (O), models using only bucket- and contract-based information
(B+C) and models using only stock-based information (S). The distinction of the information source is
provided in Appendix IA4. ***, **, * below the bars denotes statistical significance at the 0.1%, 1% and
5% level as defined in Equation (7) for the sample of “all” options. The testing sample spans the years
2003 through 2020.

from 2.65% to 1.77% (both significant at the 1% level) for the whole sample if we exclude

the whole stock-based characteristics block. Only considering the subset stock-based

characteristics (S), however, is detrimental to uncovering option return predictability.

The out-of-sample R2 drops to 0.26%. The benefit of option-derived characteristics is

huge when making informed forecasts of future delta-hedged option returns. As an addi-

tional check, we also consider whether option-contract and option-bucket information is

sufficiently informative, which would render the addition of option-based characteristics

for the underlying pointless. We strongly reject this idea, given that the inclusion of

option-based characteristics for the underlying boosts out-of-sample predictability R2
OS

from 0.93% (B+C) to 1.77% (O). Consistent with the feature group importance shown in

Figure 6, contract-based characteristics are highly important, but alone do not suffice to

forecast future single-equity option returns. Analyzing the cross-sectional out-of-sample

R2
OS;XS in Figure IA9.1 yields a comparable picture.

The increase in predictability shows that adding information from multiple sources

is useful when predicting single-equity option returns. However, we are also interested
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in making a statistical statement about this, answering whether the forecasts of N-En

using more information are statistically more informative. For completeness, we also

consider the linear ensemble (L-En) once more to understand in how far allowing for

nonlinearities helps when using only a restricted set of characteristics. The resulting

Diebold and Mariano (1995) forecast comparisons are provided in Panel A of Table 7.

Panel A: Diebold and Mariano (1995) Forecast Comparison

L-En N-En

O S full B+C O S full

L-En: B+C 2.79 −0.81 3.82 1.70 2.60 0.71 3.64
L-En: O -2.43 3.40 1.08 2.22 0.05 3.28
L-En: S 6.68 2.56 3.53 1.50 4.90
L-En: full −0.56 1.23 −1.92 2.86

N-En: B+C 4.53 -1.98 4.83
N-En: O -5.09 3.30
N-En: S 8.34

Panel B: Forecast Correlation

L-En N-En

O S full B+C O S full

L-En: B+C 0.89 0.47 0.77 0.67 0.60 0.32 0.58
L-En: O 0.44 0.84 0.63 0.66 0.31 0.63
L-En: S 0.53 0.34 0.28 0.61 0.33
L-En: full 0.55 0.61 0.37 0.70

N-En: B+C 0.86 0.38 0.76
N-En: O 0.35 0.84
N-En: S 0.50

Table 7: Forecast Comparison

Panel A of the table shows Diebold and Mariano (1995) test statistics defined in Equation (8) to compare
the forecasts for models with restricted access to the full set of characteristics. The full model is com-
pared with models using all option-based information (O), models using only bucket- and contract-based
information (B+C) and models using only stock-based information (S). The distinction of the informa-
tion source is provided in Appendix IA4. Significance at the 1% (5%) level is highlighted in light blue
(blue). Panel B shows forecast correlations defined in Equation (10). Here, highlighting in light blue
(blue) denotes large values with a cutoff at 90% (70%).

For the linear and nonlinear ensemble, we find that adding more information is always

worthwhile. At the same time, we find a clear hierarchy, which puts the informational

content of option-based characteristics above that of stock-based characteristics. Models

using both bucket and contract information (B+C) in their respective ensemble class beat

models relying solely on stock-based information (S), but are outperformed by models also
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leveraging the information inherent in option-based information about the underlying (O).

The full model for L-En and N-En performs significantly better than all three alternative

model specifications. Comparing the forecasts of the linear and nonlinear ensemble, we

find that N-En restricted to option-based information (O) manages to surpass all but the

full L-En model. In contrast, the full L-En model only manages to provide marginally

more accurate forecasts than N-En restricted to stock-based characteristics (S).23 In line

with our intuition that (i) more information is always better and (ii) that nonlinear

interactions are most valuable when making informed investment decisions in the options

space, we find that the full nonlinear ensemble manages to outperform all four L-En

specifications.

The impression from the Diebold and Mariano (1995) comparison carries over to ev-

idence from forecast correlations in Panel B of Table 7. We find the largest similarity

of the resulting predictions for linear or nonlinear ensembles estimated on option-based

information (both B+C and O) and the full information set (ρt+1 > 0.7). The forecast

correlation of models using only option- and only stock-based characteristics is partic-

ularly low. Interestingly, the predictions made by the two full model specifications are

highly correlated at ρL-En: full; N-En: full
t+1 = 0.7.

The effectiveness of forecasts depends on the characteristics of the option. We there-

fore test how the return predictability changes for various option buckets (defined in

Section 4) when restricting the information set in Table 8. Most of the times, the result-

ing best model uses all information. Notable exceptions are in the case of ITM short-term

puts for both N-En and L-En. Using the nonlinear ensemble, the resulting predictability

for the full model is significant for all short-term option buckets, and all but the in-the-

money put bucket in case of long-term options. Predictions made with models restricted

to just information based on the underlying stock tend to underperform substantially,

even generating negative predictability for long-term options.

To conclude this section, we have established the importance of using option-based

information for predicting future option returns. While more information is always ben-

eficial when allowing for nonlinearities, if one has to restrict themselves to only a subset

of available information, it is best to focus on option-based, as opposed to stock-based

information. Given limited attention and limited information processing capacity of indi-

vidual investors, this insight may prove useful for timing and engaging into investments

in the options market.

23The t-statistic amounts to −1.92, corresponding to statistical significance at the 10% level.
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L-En N-En

TTM Mon. B+C O S full B+C O S full

τ ≤ 90

atm - 0.003 - 0.002 - 0.000 0.004 0.011** 0.018*** 0.006 0.022***
itm C 0.011 0.014 0.002 0.018* 0.007 0.029 0.016** 0.059***
itm P 0.026*** 0.027** 0.010* 0.016 0.063*** 0.060** 0.028*** 0.061**
otm C 0.005 0.008* 0.002 0.012*** 0.016*** 0.023*** 0.007*** 0.027***
otm P 0.020*** 0.021*** 0.003 0.027*** 0.033*** 0.041*** 0.005 0.048***

τ > 90

atm - 0.012 - 0.007 - 0.013 0.005 0.003 0.013 - 0.003 0.025***
itm C - 0.004 0.002 - 0.011 0.014 0.013 0.033** - 0.002 0.047***
itm P - 0.033 - 0.030 - 0.029 - 0.026 0.004 0.007 - 0.013 0.015
otm C - 0.006 - 0.003 - 0.005 0.002 0.001 0.009 0.001 0.017***
otm P - 0.004 - 0.001 - 0.006 0.009* 0.002 0.012 0.001 0.023***

Table 8: Option-bucket performance for different information sets

The table shows the out-of-sample R2 defined in Equation (4) for models with restricted access to the
full set of characteristics for options in a respective bucket, as defined in Section 4. The full model is
compared with models using all option-based information (O), models using only bucket- and contract-
based information (B+C) and models using only stock-based information (S). The distinction of the
information source is provided in Appendix IA4. The information yielding the best information set per
setup is underlined. ***, **, * denotes statistical significance at the 0.1%, 1% and 5%-level as defined
in Equation (7).

6. Sources of Option Return Predictability

Hong and Stein (1999) propose a theoretical model in which gradual diffusion of in-

formation among investors explains the observed predictability of asset returns. In their

model, at least some investors can process only a subset of publicly available information

because either they have limited information-processing capabilities or searching over all

possible forecasting models using publicly available information itself is costly (Hirshleifer

and Teoh, 2003), and there are limits to arbitrage (Shleifer and Vishny, 1997; Pontiff,

2006). Due to investors’ limited attention, costly arbitrage, and informational frictions,

new informative signals are incorporated into asset prices partially because at least some

investors do not adjust their demand by recovering informative signals from observed

prices. As a result of this failure on the part of some investors, asset returns exhibit

predictability. In this section, we investigate potential economic mechanisms underlying

the sources of option return predictability. In particular, we test whether investor at-

tention and informational frictions, costly arbitrage, and option mispricing provide an

explanation to the observed return predictability in the options market.
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6.1. Presence of Informed Investors

We analyze if the return predictability is concentrated in options with lower presence

of informed investors and higher trading by non-institutional traders. We hypothesize

that option return predictability originates partly by informational frictions, such that

the information implied from stock- and option-based characteristics is not directly in-

corporated into option prices. Informed or sophisticated traders are able to detect and

process information sooner, and are therefore able to exploit mispricing. Hence, in the

presence and trading of many informed traders, information is impounded into prices

faster, or put differently, information diffuses faster. Consequently, slow information dif-

fusion leads to additional option return predictability that is more pronounced for options

with a lower share of informed traders.

We use two proxies for the presence of informed investors. First, we consider the case

of institutional investors. Institutional investors are deemed to be more sophisticated and

to exhibit superior ability in processing and reacting to information (see, among others,

Chang, Hsieh, and Wang, 2015). Boehmer and Kelley (2009) find that stocks with a

higher degree of institutional ownership are priced more efficiently. Following Eisdorfer

et al. (2020), we take institutional ownership in the underlying stock as a proxy for the

fraction of informed traders in the options market. Hence, option return predictability

should be weaker for options with higher share of institutional investors. Additionally,

we use analyst coverage as a second proxy for the presence of informed investors. The

previous literature has provided empirical evidence that analyst coverage is an important

channel through which information is incorporated into asset prices (Womack, 1996;

Barber, Lehavy, McNichols, and Trueman, 2001; Gleason and Lee, 2003; Jegadeesh, Kim,

Krische, and Lee, 2004; Kelly and Ljungqvist, 2012). Ellul and Panayides (2018) show

that the termination of analysts covering a specific stock impairs price efficiency, causes

more informed trading and leads to higher profitability of insider traders. Therefore,

we hypothesize that higher analyst coverage of the underlying stocks translates into less

option return predictability.

In order to investigate the resulting differences in return predictability, we form quin-

tile splits at time t of the stocks in our sample, either by institutional ownership, or

number of analysts covering the firm (Q1–Q5). Subsequently, we contrast the predictabil-

ity of options written on stocks with different levels of institutional ownership (analyst

coverage). Figure 9 depicts the R2
OS values for the sub-samples. Higher institutional own-

ership directly translates to lower predictability of option contracts by N-En, confirming
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Fig. 9. Predictability and Profitability Conditional on Informed Investor Presence

The figure shows out-of-sample R2
OS as defined in Equation (4) using the nonlinear ensemble N-En for

different quintiles of institutional ownership and analyst coverage of the underlying stocks, respectively.
***, **, * above the bars denotes statistical significance at the 0.1%, 1% and 5% level as defined in
Equation (7).

our hypothesis. We find the highest predictability for stocks in the lowest institutional

ownership quintile at R2
OS = 4.6%. For stocks with higher institutional ownership, we

find levels of predictability at around 1.9% to 2.5%. The predictability uncovered is sta-

tistically significant for all levels of institutional ownership. Turning to analyst coverage,

option return predictability is strictly monotonically decreasing in the number of ana-

lysts covering a firm. In the lowest quintile, R2
OS = 4.4%, which drops to an insignificant

0.6% in Q5. Figure IA10.1 in the Online Appendix shows similar findings in the case of

cross-sectional out-of-sample predictability.

The above findings motivate us to study the effect of high and low institutional own-

ership (analyst coverage) on the economic significance of return predictability in more

detail. Precisely, we perform bivariate portfolio level analyses to study how option re-

turn predictability varies across different levels of institutional ownership and analyst

coverage. We sort options into quintiles based on the level of institutional ownership (or

analyst coverage) of the underlying stock at the end of month t. Subsequently, within

each quintile, options are further sorted into quintiles by the one-month-ahead expected

return forecast of N-En.

Panel A of Table 9 presents the results for the 25 (5x5) portfolios sorted by expected

returns conditional on institutional ownership. It is evident from the last column that H-L

return spreads are significantly positive regardless of the level of institutional ownership.

Monthly returns range from 2.49% to 1.40%. The spreads between the lowest and highest

return forecast quintiles are nearly monotonically decreasing such that the difference-in-
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Low Pred. 2 3 4 High Pred. H-L

Institutional Holdings

Low - 1.985*** - 0.505*** - 0.222 - 0.067 0.508** 2.492***
2 - 1.138*** - 0.342** - 0.177 - 0.059 0.304 1.441***
3 - 1.091*** - 0.338** - 0.149 - 0.024 0.311 1.402***
4 - 1.027*** - 0.308** - 0.129 0.031 0.445** 1.473***
High - 1.270*** - 0.379*** - 0.131 0.055 0.512** 1.782***
H-L 0.715*** 0.126** 0.091** 0.122*** 0.004 - 0.710***

Analyst Coverage

Low - 2.056*** - 0.483*** - 0.076 0.213 0.870*** 2.926***
2 - 1.439*** - 0.348** - 0.068 0.143 0.646*** 2.085***
3 - 0.967*** - 0.229* - 0.063 0.097 0.458** 1.425***
4 - 0.799*** - 0.209 - 0.077 0.039 0.406* 1.205***
High - 0.736*** - 0.272** - 0.094 - 0.003 0.279 1.015***
H-L 1.321*** 0.211*** - 0.017 - 0.216*** - 0.591*** - 1.911***

Table 9: Bivariate Portfolios of Institutional Attention and Expected Returns

The table shows realized returns for quintile portfolios following the predictions by the nonlinear ensemble
N-En within quintiles sorted by analyst coverage in the upper panel and institutional ownership share
in the lower panel. ***, **, * denotes statistical significance at the 1%, 5% and 10%-level as defined
in Equation (7). We also show the realized returns and significance for the resulting high-minus-low
portfolios.

difference return spread is economically (−0.71% per month) and statistically significant

at the 1% level.

Panel B of Table 9 shows even stronger results for analyst coverage. The return spreads

in the last column confirm pervasive option return predictability for all analyst coverage

quintiles by the N-En model. The return spreads are strictly monotonically decreasing in

the degree of analyst coverage, confirming our hypotheses that option return predictability

is directly related to institutional attention. Furthermore, this leads to a negative and

highly significant difference between the high-minus-low spreads of the highest and lowest

analyst coverage quintile of −1.91% per month. Taken together, the results for analyst

coverage and institutional ownership are in line with the notion that the presence of

informed traders and the resulting faster diffusion of information reduces option return

predictability.

6.2. Option Demand by Types of Market Participants

We now investigate in how far option demand by professional traders and public cus-

tomers translates into return predictability. For this, we obtain open/close option trans-
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action data for various types of market participants from four NASDAQ exchanges and

the CBOE C1 exchange from January 2011 through December 2020.24 The open/close

data set unfortunately does not provide a clear distinction between institutional and re-

tail trading. As an approximation, we separately consider “public customers”, which

we denote as Customers (C), and the joint trading activity of “proprietary traders” and

“professional customers”, which we summarize as Professionals (P). While this classifi-

cation does not guarantee that trades of institutions do not end up in the group of C,

the relative concentration of informed trades is expected to be much higher in group

P compared to group C.25 If anything, under our assumption that institutional trading

leads to more efficient prices, our results should be even stronger if we were able to ad-

equately differentiate between retail and institutional options trading. Eisdorfer et al.

(2020) construct investor groups in the options market in a similar fashion to understand

whether retail-driven trades exhibit more behavioral biases.

An investor may express pessimistic views about the underlying stock by purchasing

puts or alternatively short-selling call options. The opposite holds true for betting on

optimistic expectations. We therefore consider signed open interest in individual option

contracts over the last month, and analyze how buying or selling pressure by C and P

impacts the resulting return predictability during month t+ 1. Define the signed volume

over the last month for contract i as:

V olumex;Buy
i,t = V olumex;OpenBuy

i,t + V olumex;CloseBuy
i,t (13)

V olumex;Sell
i,t = V olumex;OpenSell

i,t + V olumex;CloseSell
i,t , (14)

for option j at time t and x ∈ [C, P]. Net demand for each investor group is consequently

defined as the difference between the daily buy and sell volume, which we denote as

V x. We calculate monthly net demand of option i by summing up the respective daily

signed volume. We scale the resulting signed volume measures V x by the total non-signed

volume of public customers, professional traders, and proprietary trading desks to make

it comparable across stocks. Furthermore, we aggregate individual option volume V x
i,t at

the level of the underlying to arrive at V x
S,t. Following Garleanu et al. (2009), demand in

one option has price effects also on neighboring options of the same underlying. While

any demand potentially increases the informativeness of market prices, we argue that the

24The four NASDAQ exchanges are NASDAQ PHOTO, NASDAQ Options Market, NASDAQ ISE,
and NASDAQ GEMX.

25We also note that the classification into “professional customer” differs between the CBOE and
NASDAQ exchanges.

43

Electronic copy available at: https://ssrn.com/abstract=3895984



< >

<
>

2.18%
**

3.17%
**

2.03%
***

1.32%
***

1.30%
**

2.30%
***

2.89%
***

3.39%
**

2.04%
***

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

Fig. 10. Predictability Conditional on Option Demand

The figure shows the out-of-sample R2
OS as defined in Equation (4) using the nonlinear ensemble N-En

conditional on the net open interest of retail and institutional investors, I. We independently form
terciles based on the cross-sectional distribution of IR and II . ***, **, * denotes statistical significance
at the 0.1%, 1% and 5%-level as defined in Equation (7).

impact of institutional demand is amplified. This in turn should correspond to decreasing

return predictability.

Figure 10 shows the resulting R2
OS for public customers (C) vs. professional traders

(P). We define terciles based on the cross-sectional distribution of V x during month t and

analyze the resulting predictability for t+ 1. We find multiple interesting results: First,

option return predictability is highest for options with little to no demand by professionals

(V P ≈ 0), while it is lowest if demand by both investor groups is missing (R2
OS =

1.30%). Second, compared to these cases, a lack of customer demand if demand by

professionals is present leads to much lower predictability, consistent with our hypothesis

that professionals are quicker to impound information into market prices. Our model

(N-En) manages to identify these situations of mispricing and allows an investor to profit

from them. The model also uncovers high predictability in cases where public customers

are buying options of an underlying and professionals facilitate their buying intent by

shorting, which is in line with Garleanu et al. (2009) who argue that professional traders

tend to act as market markers. We add to this by showing that they tend to act in this

way in cases where N-En uncovers high predictability of the respective option from which

professionals can profit.
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6.3. Costly Arbitrage

Our main results have shown a high level of option return predictability, especially in

comparison to the cross-section of stock returns (Gu et al., 2020). Moreover, we find that

option return predictability is stable over time and does not vanish towards the end of our

sample period. Hence, one might wonder if limits-to-arbitrage are preventing competitive

arbitrageurs from benefiting of pricing anomalies underlying option return predictability.

As liquidity is considered one facet of costly arbitrage (Atilgan, Bali, Demirtas, and

Gunaydin, 2020), the analysis on the impact of transaction costs on the profitability on

machine learning portfolios in Section 5.2.2 has hinted at its importance. Whereas con-

servative estimates of transaction costs have a substantial influence on long-term options,

trading short-term at-the-money and out-of-the-money options remains profitable in all

months of our sample.

Idiosyncratic risk has been identified as the main arbitrage cost in case of stocks

(Shleifer and Vishny, 1997; Pontiff, 2006). Rather than relying on idiosyncratic risk

of option excess returns, we focus on the bid-ask spread of the underlying stock as an

impediment to trading the underlying. Arbitrageurs who have identified an anomaly in

a given option will want to hedge their directional exposure from the underlying stocks.

High bid-ask spreads of the underlying stock therefore present costs for arbitrageurs in

delta-hedging their option positions. Consequently, pricing errors may persist even in the

presence of arbitrageurs.

Stock Illiquidity
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Fig. 11. Predictability and Profitability Conditional on Stock Illiquidity – R2
OS

The left panel of the figure shows out-of-sample R2
OS as defined in Equation (4) using the nonlinear

ensemble N-En for different quintiles of the underlying stock’s illiquidity measured by the relative bid
ask spread, baspread = ask−bid

mid . ***, **, * above the bars denotes statistical significance at the 0.1%,
1% and 5%-level as defined in Equation (7).
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In order to understand how costly arbitrage is influencing option return predictability,

we investigate the effect of stock bid-ask spreads on out-of-sample R2
OSs. In Figure 11,

we have sorted our option sample into quintiles based on the underlying stock’s bid-ask

spread. Figure 11 shows that options on stocks with higher bid-ask spreads exhibit higher

return predictability. This relationship is strictly monotone and amplified for the quintile

of the least liquid underlying stocks. Here, we find predictability of approximately 5%.26

Low Pred. 2 3 4 High Pred. H-L

Stock Illiquidity

Low - 0.585*** - 0.188* - 0.082 0.019 0.189 0.774***
2 - 0.770*** - 0.210* - 0.063 0.058 0.358** 1.127***
3 - 1.008*** - 0.235 - 0.015 0.158 0.520** 1.528***
4 - 1.348*** - 0.407*** - 0.084 0.167 0.674*** 2.022***
High - 2.567*** - 0.916*** - 0.241 0.292 1.209*** 3.776***
H-L - 1.981*** - 0.734*** - 0.164 0.267** 1.017*** 2.998***

Table 10: Bivariate Portfolios of Stock Illiquidity and Expected Returns

The table shows realized returns for quintiles portfolios following the predictions by the nonlinear ensem-
ble N-En within quintiles of the underlying stock’s illiquidity measured by the relative bid ask spread,
baspread = ask−bid

mid . ***, **, * denotes statistical significance at the 1%, 5% and 10%-level as defined
in Equation (7). We also show the realized returns and significance for the resulting high-minus-low
portfolios.

We also form bivariate portfolios by sorting options into the expected return quintiles

within each stock bid-ask quintile. Table 10 reports the results. Return spreads are

significantly positive regardless of the level of stock bid-ask spreads. Moreover, the one-

month-ahead average realized return spreads between the lowest and highest expected

return forecast quintiles are strictly monotonically increasing in stock bid-ask spreads.

Most importantly, the diff-in-diff return spread is economically large at 3% per month and

highly statistically significant, showing that the return predictability in the cross-section

of equity options is significantly influenced by the level of illiquidity of underlying stocks.

Overall, the results suggest that option return predictability is at least in part tied to

costly arbitrage.

6.4. Option Mispricing

We expect to find higher levels of predictability for options that are mispriced as the

nonlinear ensemble model should manage to identify these opportunities and correctly

propose shorting over- and investing into undervalued options.

26Evidence from cross-sectional R2
OS;XS confirms these findings, see Figure IA10.3.
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Option Mispricing
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Fig. 12. Predictability and Profitability Conditional on Option Mispricing – R2
OS

The left panel of the figure shows out-of-sample R2
OS as defined in Equation (4) using the nonlinear

ensemble N-En for different quintiles of option mispricing. We calculate option mispricing using the
stocks’ realized volatility over the last quarter and calculate “fair prices” for short-term at-the-money

options using it as input to the Black and Scholes (1973) model. Mispricing is then defined as log(O/Õ),

where Õ denotes the obtained “fair price”. ***, **, * above the bars denotes statistical significance at
the 0.1%, 1% and 5% level as defined in Equation (7).

We follow Eisdorfer et al. (2020) to quantify option mispricing as the ratio between

theoretical and observed option prices. The theoretical option price is given by the Black

and Scholes (1973) pricing model, where we use each underlying stock’s realized volatility

over the past quarter, estimated using high-frequency price data from the NYSE TAQ

database, as our estimate for the expected volatility. For all short-term at-the money

options, we compare the log of the theoretical price with the log of the price observed

in the market, i.e., Mispricing = log(O/Õ), where Õ denotes the theoretical and O

the observed mid price. A high (low) level of mispricing thus denotes overvaluation

(undervaluation). Averaging over all short-term at-the-money options, we obtain one

level of mispricing per underlying stock at each point in time.

The predictability for different mispricing quintiles is provided in Figure 12. Con-

sistent with our hypothesis that predictability clusters within over- and under-valued

options, we find the highest level of predictability in the most undervalued, followed by

the most overvalued options. This create a U-shaped predictability pattern in the option’s

mispricing.

This predictability pattern also translates into additional profitability, as depicted in

Table 11. The high-minus-low spread within each option mispricing portfolio is highly

significant, generating monthly profits upwards of 1.52% per month. Interestingly, the dif-

ference between these spreads for under- and overvalued stocks is insignificant at −0.06%
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Low Pred. 2 3 4 High Pred. H-L vs. Fair

Option Mispricing

Under - 1.278*** - 0.304** - 0.054 0.156 0.678*** 1.956*** 0.441***
2 - 1.101*** - 0.255* - 0.045 0.132 0.593*** 1.694*** 0.179**
Fair - 0.995*** - 0.234 - 0.087 0.069 0.520** 1.515*** ---
4 - 0.994*** - 0.232* - 0.031 0.134 0.545** 1.539*** 0.024
Over - 1.467*** - 0.381*** - 0.103 0.059 0.427* 1.894*** 0.379***
Over-Under - 0.190* - 0.077 - 0.050 - 0.097* - 0.251** - 0.062 ---

Table 11: Bivariate Portfolios of Option Mispricing and Expected Returns

The table shows realized returns for quintiles portfolios following the predictions by the nonlinear ensem-
ble N-En within quintiles sorted by option mispricing. We calculate option mispricing using the stocks’
realized volatility over the last quarter and calculate “fair prices” for short-term at-the-money options
using it as input to the Black and Scholes (1973) model. Mispricing is then defined as log(O/Õ), where

Õ denotes the obtained “fair price”. We also show the realized returns and significance for the resulting
high-minus-low portfolios. Column “vs. Fair” tests statistical differences between the H-L portfolios for
under- and overvalued options, and fairly valued options. ***, **, * denotes statistical significance at
the 1%, 5% and 10%-level as defined in Equation (7).

per month, suggesting that significant trading opportunities exist within over- and un-

dervalued options. Instead, when we compare the high-minus-low portfolio returns of

mispriced options with the portfolios using only fairly priced options (so O ≈ Õ), we find

that they are significantly different from each other, with higher returns both for under-

valued (0.44%) and overvalued options (0.38% per month). To summarize, the employed

machine learning methods manage to pick up on mispricing opportunities in the options

market and allow investors to profit from them.

7. Conclusion

An extensive literature examines cross-sectional determinants of stocks, bonds, cur-

rencies, mutual funds, and hedge funds. However, research on cross-sectional predictors

of option returns is relatively scarce and not very well understood. In this paper, we

close this gap in the literature and identify variables that predict the cross-sectional dif-

ferences in delta-hedged option returns. Predicting option returns is of foremost relevance

for retail and institutional investors as the importance of option markets for hedging and

speculation purposes has strongly increased in the past years.

In this paper, we apply machine learning to predict individual U.S. option returns

using a set of 77 option-based and 193 stock-based characteristics in the period from

1996 to 2020. Empirically, we derive several results that enhance our knowledge on
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empirical asset pricing. First, we show that the complexity of the machine learning

models matters for prediction and observe that nonlinear models outperform linear models

in terms of out-of-sample R-squared. Second, our results reveal that a trading strategy

based on nonlinear machine learning forecasts is highly profitable and remains statistically

and economically significant even when accounting for realistic transaction costs. Third,

we find that characteristics describing the option’s location on the underlying’s implied

volatility surface are the most relevant to successfully predict option returns. Finally, we

document that the sources of return predictability are related to informational frictions in

the options market and the existence of costly arbitrage. In line with this notion, we find

that option return predictability is higher for options on stocks characterized by (i) low

institutional ownership and low analyst coverage, (ii) with little demand by professional

traders, but substantial interest by public customers, such as retail investors, (iii) for

illiquid underlying stocks, and (iv) mispriced options.
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Internet Appendix

Option Return Predictability with Machine Learning and Big Data

by Turan G. Bali, Heiner Beckmeyer, Mathis Moerke, Florian Weigert

Table of Contents:

• Appendix IA1 provides an overview of the machine learning methods used in

this paper.

• Appendix IA2 details the estimation procedure and how we set up the hyperpa-

rameter search.

• Appendix IA3 details the option-based characteristics.

• Appendix IA4 lists the 270 option-based and stock-based characteristics used as

well as their origin and information source.

• Appendix IA5 provides additional summary statistics for the sample used, in-

cluding for the underlying stocks and more details about option buckets.

• Appendix IA6 provides additional information for the comparison between the

linear and nonlinear ensemble methods.

• Appendix IA7 provides additional information for the trading strategy based on

the machine learning portfolios.

• Appendix IA9 provides additional information for the sample importance.

• Appendix IA10 provides additional information for the sources of option return

predictability.
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Appendix IA1. Methods Used

Following Gu et al. (2020) we compare a variety of simpler and complex methods in

our empirical analysis. Within the subgroup of linear models we include simple penalized

regressions in the form of an elastic net (ENet), Ridge and Lasso, as well as a combination

of dimension reduction techniques and linear regression, partial least squares (PLS) and

principal component regressions (PCR).

For nonlinear estimators we differentiate between tree-based methods and neural net-

works. Explicitly, we compare the performance of random forests (RF), gradient-boosted

regression trees (GBR), and gradient-boosted regression trees with dropout (DART),

proposed in Gilad-Bachrach and Rashmi (2015). Here, leaves are randomly “dropped”

during training, which regularizes the process and helps avoid overfitting. We use Mi-

crosoft’s LightGBM implementation for our tree-based methods Ke, Meng, Finley, Wang,

Chen, Ma, Ye, and Liu (2017), which grows trees leaf-wise, aiding in faster convergence.

Feed-forward neural networks are implemented in PyTorch Paszke, Gross, Massa,

Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, De-

Vito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala (2019). In contrast

to Gu et al. (2020) we vary the number of hidden layers and nodes during hyperparameter

optimization. This way, we combine the predictions of shallow and deep neural nets in

one ensemble, having the benefit of probing different parts of the data and combining

the results. For the neural network implementations we rely on the optimizer AdamW

(Loshchilov and Hutter, 2017)to tune the weights, which adapts the learning rates during

training and correctly implements weight-decay of individual training weights as an im-

provement upon the well-known Adam optimizer (Kingma and Ba, 2014). We also follow

the idea of Reddi, Kale, and Kumar (2019) which promises better theoretical convergence

of our optimization procedure.

To come up with candidate solutions of our models, we optimize over the mean squared

error for a given set of hyperparameters θ, which are unique to the respective model class

(more on this below):

L(θ) =
1

NT

N∑
i=1

T∑
t=1

(ri,s,t+1 − g(zi,s,t))
2 (IA1)
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Appendix IA2. Estimation Details

Machine learning algorithms crucially depend on hyperparameters that govern the

amount of regularization of the model in question, which ultimately determines the gen-

eralizability of the resulting representation of g(?) in Equation (2). Hyperparameters

have to be set by the researcher before the actual training of the model begins. Following

Gu et al. (2020) we optimize over the model’s hyperparameter in a validation sample.

More specifically, we estimate model parameters on the first five years of data, validate

the hyperparameters in the next two, and test the resulting model’s predictions in the

following year. We repeat this procedure for each year in the testing sample from 2003

through 2020, increasing the number of training years by one at each iteration.

Within each training sample, we optimize the mean-squared error (Equation (IA1)) of

the in-sample prediction, for a given set of randomly-chosen hyperparameters θ (Bergstra

and Bengio, 2012). The different sets are compared by their mean-squared error in the

validation sample. To decrease the computational burden, and allocate more time to

the most promising θs, we use the asynchronous successive halving algorithm put forth

by Li, Jamieson, Rostamizadeh, Gonina, Hardt, Recht, and Talwalkar (2018).1 This is

an extension of the popular Hyperband scheme for hyperparameter optimization, which

allocates more iterations to the most promising θs Li, Jamieson, DeSalvo, Rostamizadeh,

and Talwalkar (2017). This search exercise has the added benefit of providing close-to-

best solutions on the go. We thus use an equally-weighted ensemble of the eight best

models within each model class. This ensemble generalizes better to unseen data. While

estimating, we do not apply a weighting scheme to the return observations, but note that

one benefit of our option sample is that the total information per underlying s used in

the estimation procedure scales linearly in the number of outstanding option contracts

available for it. Thereby we automatically shift estimation towards larger and more liquid

stocks. To assure that we do not overfit on the training data, we employ early stopping

if a trial’s validation error L has not decreased for eight iterations (32 for tree-based

methods).

Table IA2.1 shows the hyperparameter ranges used for each model type as well as

additional information on how we use stochastic gradient descent to estimate model

parameters when applicable.

1We use the implementation in Ray Tune (Liaw, Liang, Nishihara, Moritz, Gonzalez, and Stoica
(2018)). We carry out the model estimation on Palma II, the high-performance computing cluster of the
University of Muenster: https://www.uni-muenster.de/IT/services/unterstuetzungsleistung/

hpc/.
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ENet, Lasso, & Ridge

Max Epochs 64
Random search trials 512
Batch size ∈ [212, 214, 216]
Learning rate ∈ [0.001, 0.01, 0.1]
α LU(1e−6, 1e−2)

ENet λ U(0, 1)

PCR & PLS

Number of Components ∈ [1, 2, 3, 4, 5, 6]

FFN

Max Epochs 64
Random search trials 512
Batch size ∈ [212, 214, 216]
Learning rate ∈ [0.001, 0.01, 0.1]
Weight decay U(0, 0.1)
Amsgrad (Reddi et al., 2019) True
First layer size ∈ [32, 64, 128]
Number of hidden layers ∈ [1, 2, 3, 4, 5]
Dropout probability U(0, 0.5)

RF, GBR, & Dart

Max trees 1024
Random search trials 512
Learning rate ∈ [0.01, 0.1, 1]
Max depth per tree U int(2, 10)
Max number of leaves per tree U int(2, 512)
l1 regularization U(0, 0.1)
l2 regularization U(0, 0.1)
Fraction of features per run U(0.25, 1)
Bagging fraction U(0.25, 1)
Bagging frequency ∈ [1, 10, 50]

Dart Dropout probability ∈ [0.05, 0.1, 0.15]
Dart Probability of skipping dropout ∈ [0.25, 0.5]

Table IA2.1: Hyperparameters for the Models Considered.

The table shows the hyperparameters and the boundaries from which they are randomly drawn to
optimize them for each model considered. U (LU , U int) refers to drawing from a uniform (log-uniform,
integer-wise uniform) distribution within the respective boundaries.
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Appendix IA3. Option-Based Characteristics

This section describes a broad set of the 77 option-based characteristics, motivated

by earlier studies on the cross-section of option and/or stock returns. Out of the 77

we compute, 42 characteristics operate on the level of the underlying stock, 19 on the

level of option buckets (that is, we differentiate between different parts of the time-to-

maturity and moneyness domain of options, described in Section 4.3), and 16 on the level

of individual option contracts.

IA3.1. Stock-Level

1. Implied volatility slope (ivslope). Following Vasquez (2017), the slope of the

implied volatility term structure is defined as

ivslope = IVLT − IV1M ,

where IV1M is the average of short-term atm put and call implied volatilities and

IVLT denotes the average volatility of atm put and call options that have the longest

time to maturity available and the same strikes as the short-term options.

2. Risk-neutral skewness (rnsτ). Risk-neutral skewness for different times to ma-

turity τ . We include τ ∈ [30, 91, 182, 273, 365] days as Borochin, Chang, and Wu

(2020) has stressed the importance of short term and long term risk-neutral skew-

ness for the cross-section of equity returns.

3. Risk-neutral kurtosis (rnkτ). Risk-neutral kurtosis for different times to matu-

rity τ . We include τ ∈ [30, 91, 182, 273, 365] days.

4. Option-implied variance asymmetry (ivarud30 ). The difference between

upside and downside risk-neutral semivariances according to Huang and Li (2019).

5. Option implied tail loss (tlm30 ). A forward-looking tail loss measure according

to Vilkov and Xiao (2012). It is computed as

tlm30 =
β(K)

1− ξ
,

where β(K) and ξ are the scaling parameter and tail shape parameter of a gen-

eralized Pareto distribution Gξ,β(K). The scaling parameter β depends on a cutoff

value K.

6. Stock vs. option volume (so). Following Roll et al. (2010), the ratio of the
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number of the underlying’s traded shares and the trading volume for all options on

the underlying.

7. Log of stock vs. option volume (lso). Following Roll et al. (2010), the natural

logarithm of so.

8. Stock vs. option volume (dso). Following Roll et al. (2010), the ratio of

the transacted dollar amount in the underyling’s shares and the transacted dol-

lar amount of all options on the underlying.

9. Log of stock vs. option volume (ldso). Following Roll et al. (2010), the natural

logarithm of dso.

10. Modified stock vs. option volume (modso). Following Johnson and So (2012),

the ratio of the number of the underlying’s traded shares and the trading volume for

all options on the underlying. The difference to so is that Johnson and So (2012)

apply stricter data filters than Roll et al. (2010).

11. Put-call ratio (pcratio). Following Blau, Nguyen, and Whitby (2014), the total

put volume divided by the total options volume over the last month for a given

underlying.

12. Contribution of market frictions to expected returns (fric). Hiraki and

Skiadopoulos (2020) show that scaled deviations of put-call-parity measure the

contribution of market frictions to expected returns. Consequently, fric is defined

as

fric = R0
t,T

S̃t(K,T )− St
St

,

where S̃t(K,T ) = Ct(K,T )− Pt(K,T ) + K+Dt

R0
t,T

. St denotes the stock price at time

t, its dividend payment is given by Dt. The time t price of a call option and put

option with strike price K and maturity date T are given by Ct(K,T ) and Pt(K,T ),

respectively. R0
t,T denotes the gross risk-free rate over the period from t to T .

13. Proportional bid-ask spread (pba). Following Cao and Wei (2010), we use the

proportional bid-ask spread as a measure of illiquidity

pba =

∑
j V OLj ×

askj−bidj
0.5×(askj+bidj)∑

j V OLj
,

where V OLj denotes the trading volume in option j, askj and bidj the bid and ask

spread of option j, respectively.

14. Dollar trading volume (dvol). Following Cao and Wei (2010), we include the
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dollar trading volume across all options,∑
j

V OLj × (askj + bidj)/2.

15. Absolute illiquidity (ailliq). Following Cao and Wei (2010), we introduce the

absolute illiquidity as

ailliq =

∑
j ×

|Πt|
DV OLj∑

j V OLj
,

where DV OLj denotes the dollar trading volume in option j.

16. Percentage illiquidity (pilliq). Following Cao and Wei (2010), we introduce the

absolute illiquidity as

ailliq =

∑
j ×

|Πt|
DV OLj×Oj∑
j V OLj

,

where DV OLj denotes the dollar trading volume in option j, and Oj the price of

option j.

17. Trading volume (vol). Following Cao and Wei (2010), we include the trading

volume across all options as defined as
∑

j V OLj, with V OLj being the volume in

option j.

18. Number of traded options (nopt). The average number of options per under-

lying stock per month.

19. Total open interest (toi). Open interest across all options on an underlying.

20. Volatility uncertainty (volunc). Following Cao et al. (2019), we calculate

monthly volatility-of-volatility based on different measures of daily volatility es-

timates. As a first measure, we take implied volatilities of call options that have

a delta of 0.5 and 30 days to maturity. As a second measure, the estimate an

EGARCH(1,1) model with daily stock returns over a rolling window of the past

twelve months. For both measures of volatility, we calculate the return of volatility

as ∆σ
σ

= σt−σt−1

σt−1
, where σt is the volatility on day t. Subsequently, we calculate for

each measure a monthly volatility-of-volatility estimate as the standard deviatio of

the daily percentage in volatility. Next, we rank stocks based on the two measures.

Finally, we compute volunc as the average of the ranking percentile of the two

individual volatility-of-volatility measures. Note that Cao et al. (2019) includes a

third volatility-of-volatility measure based on realized variance based on intraday

data.
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21. Atm iv volatility (ivvol). Following Baltussen, van Bekkum, and van der Grient

(2018), volatility of atm implied volatility scaled by average implied volatility, that

is

V OV 1M
t =

√
1
20

∑t
j=t−19

(
σIVj − σ̄IVt

)2

σ̄IVt
,

where σ̄IVt = (1/20)
∑t

j=t−19 σ
IV
j , and σIVj is implied volatility.

22. Variance spread (ivrv). Following Bali and Hovakimian (2009), the realized-

implied volatility spread, defined as

ivrv = RV ol − IV ol,

where RV ol is the realized volatility over month t and IV ol is the average volatility

implied by atm call and atm put options observed at the end of month t.

23. Variance spread (ivrv ratio). The realized-implied volatility ratio, defined as

ivrv =
IV ol

RV ol
,

where RV ol is the realized volatility over month t and IV ol is the average volatility

implied by atm call and atm put options observed at the end of month t.

24. Near-the-money call minus put implied volatility (civpiv). Following Bali

and Hovakimian (2009), the implied volatility spread of call and put options, defined

as

civpiv = CV ol − PV ol,

where CV ol and PV ol denote call and put near-the-money implied volatility, re-

spectively.

25. Atm call minus put implied volatility based on implied volatility surface

data (atm civpiv). The implied volatility spread of call and put options, defined

as

atm civpiv = CV ol − PV ol,

where CV ol and PV ol denote call and put atm implied volatility based on implied

volatility surface data, respectively.

26. Change in atm call IV (dciv). Following An et al. (2014), the change in the
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implied volatility at-the-money call options, defined as

dciv = CV olt − CV olt−1,

where CV olt denotes month-t call implied volatility based on implied volatility

surface data.

27. Change in atm put IV (dpiv). Following An et al. (2014), the change in the

implied volatility at-the-money put options, defined as

dpiv = PV olt − PV olt−1,

where PV olt denotes month-t put implied volatility based on implied volatility

surface data.

28. Change in atm put minus call IV (atm dcivpiv). Following An et al. (2014),

the change in the implied volatility spread of call and put options, defined as

atm dcivpiv = (CV olt − CV olt−1)− (PV olt − PV olt−1) ,

where CV olt and PV olt denote month-t call and put atm implied volatility based

on implied volatility surface data, respectively.

29. IV skew (skewiv). Following Xing, Zhang, and Zhao (2010), an implied volatility

smirk measure as the difference between the implied volatilities of otm puts and

atm calls, denoted by V OLOTMP and V OLATMC , respectively, that is

skewiv = V OLOTMP − V OLATMC .

We compute monthly skewiv by averaging over daily skewiv .

30. Weighted put-call spread (vs level). Following Cremers and Weinbaum (2010),

the call-put spread is

V St = IV calls
t − IV puts

t =
Nt∑
j=1

wj,t
(
IV call

j,t − IV
put
j,t

)
,

where j denotes pairs of put and call options with the same strike and time to

maturity, wj,t are weights, Nt denotes the number of valid pairs of options on day t,

and IVj,t denotes Black and Scholes (1973) implied volatility. Average open interest

in the call and puts are used as weights.
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31. Change in weighted put-call spread (vs change). Following Cremers and

Weinbaum (2010), we compute changes in vs level .

32. Put-call parity violations (pcpv). We follow Ofek et al. (2004) and record

violations of put-call-parity via the midpoints of option quotes and the closing

price of the stock. Precisely, pcpv is given as

pcpv = 100 log

(
S

S∗

)
,

where S denotes the stock price, and S∗ = PV (K) + C − P , where PV (K) is the

present value of the strike price K, and C and P denote the prices of a call and put

option, respectively. Ofek et al. (2004) focus on ATM and intermediate maturities

(i.e. between 91 and 182 days). As the authors filter for dividends and we want

to exclude as little stocks as possible, we focus on ATM and short-term maturities,

which are also studied by Ofek et al. (2004), but in a sub-analysis. We compute an

average over the previous month.

33. Implied shorting fees in options (shrtfee). Muravyev et al. (2021) propose

an option-based shorting fee measure as

himpQ =
1

δ

(
1−

(
1− St − Ct + Pt − PV (D)− PV (K)

St

)1/k
)
,

where Ct and Pt are the midpoints of quoted call and put quote prices, PV (D) is

the present value of dividends with ex-dividend dates before the expiration date,

k denotes the time to expiration, St is the current stock price and K is the strike

price, and δ is the one-day discount factor. We take the median of the implied

borrowing fees from put-call pairs.

34. Implied volatility duration (ivd). Measure for the expected timeliness of the

resolution of uncertainty, following Schlag, Thimme, and Weber (2020). It is defined

as

ivd =
J∑
j=1

∆IV 2
j∑

j ∆IV 2
j

× τj,

where ∆IV 2
j = IV 2

j,τj
−IV 2

j,τj−1
is the difference between the non-annualized squared

IVs for all options at τj and those at τj−1, and (τ1, . . . , τ8) = (30, 60, 91, 122, 152, 182, 273, 365)

(days).
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IA3.2. Bucket-Level

For each bucket-underlying stock combination, we first calculate open-interest weighted

average returns, mid prices and implied volatilities at the daily frequency. Open-interest,

mid prices, and implied volatilities are obtained from OptionMetrics.

1. Illiquidity (illiq) Following Bao, Pan, and Wang (2011) in case of corporate bond

markets, we construct an illiquidity measure, which aims to extract the transitory

component from option prices. Precisely, let ∆pitd = pitd − pitd−1 be the log price

change for option i on day d of month t. Then,

illiq = −COVt(∆pitd,∆pitd+1).

2. Roll’s daily measure of illiquidity roll) As an alternative measure of option-

level illiquidity using daily option returns, the Roll (1984) measure is defined as,

roll =

2
√
−cov(rd, rd−1), if cov(rd, rd−1) < 0

0, otherwise,

where rd is the option return on day d.

3. Illiquidity measure based on zero returns (pzeros) As in Lesmond, Ogden,

and Trzcinka (1999), we take the proportion of zero return days as a measure of

liquidity. We compute their measure on a monthly basis as

pzeroes =
# of zero return days

T
,

where T denotes the number of days in a month.

4. Modified illiquidity measure based on zero returns (pfht) Fong, Holden,

and Trzcinka (2017) propose a modified version of Lesmond et al. (1999), given as

pfht = 2× σ × Φ−1

(
1 + pzeros

2

)
,

where σ denotes the volatility of an option contract and Φ is the cumulative standard

normal distribution.

5. Amihud measure of illiquidity (amihud) Following Amihud (2002), the mea-
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sure aims at capturing the price impact and is defined as

amihud =
1

N

N∑
d=1

|rd|
Qd

,

where N is the number of positive-volume days in a given month, rd the daily

return, and Qd the trading volume on day d.

6. An extended Roll’s measure (piroll) Goyenko, Holden, and Trzcinka (2009)

motivate an extended transaction cost proxy measure, which is defined for every

transaction cost proxy tcp and average daily dollar volume Q̄ in the period under

observation as

piroll =
tcp

Q̄

where we subsitute tcp by roll.

7. An extended FHT measure based on zero returns (pifht)

pifht =
pfht

Q̄
,

with pfht being the modified illiquidity measure based on zero returns (Fong et al.,

2017), and Q̄ is the average daily dollar volume in the period under observation.

8. Std.dev of the Amihud measure (stdamihud) The standard deviation of the

daily Amihud (2002) measure within a month.

9. Pastor and Stambaugh’s liquidity measure (gammaps) Pástor and Stam-

baugh (2003) introduce a measure for the price impac based on price reversals for

the equity market. It is given by γ in the following regressions:

ret+1 = θ + ψ × rt + γ × sign(ret )×Qt + εt,

where ret denotes the asset’s e excess return over a market index, rt is the asset’s

return, Qt the trading volume at day t. We choose the risk-free as the market index

and set gammaps = −γ.

10. Volatility (hvol). Historical volatility is estimated using daily data over the last

month.

11. Skewness (hskew). Historical skewness is estimated using daily data over the

last month.

12. Kurtosis (hkurt). Historical kurtosis is estimated using daily data over the last
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month.

13. Disposition effect (ocgo). We follow Bergsma, Fodor, and Tedford (2020) in our

definition of the disposition effect in options markets. Let Ot denote the price of

an options contract, Vt the option turnover as the daily volume divided by open

interest. We calculate the return Rt as

Rt =
20∑
n=1

(
Vt−n

n−1∏
τ=1

[1− Vt−n+τ ]

)
Ot−n,

then our measure is defined as

ocgo = −Ot−2 −Rt−1

Ot−2

.

14. Open interest vs. stock volume (oistock). As a measure of demand, we

compute the ratio of open interest to underlying stock volume.

15. Volume (bucket vol). The options volume as the sum of the volume of all options

contracts within the bucket.

16. Dollar volume (bucket dvol). The options dollar volume as the sum of the

dollar volume of all options contracts within the bucket.

17. Relative volume (bucket vol share). bucket vol divided by the options vol-

ume of all options contracts for the same underlying.

18. Turnover (turnover). The ratio of options volume to options open interest.

19. Implied volatility rank vs. last year (iv rank). Heston and Li (2020) and

Jones, Khorram, and Mo (2020) document momentum and reversal in option re-

turns. Though Heston and Li (2020) and Jones et al. (2020) use options returns in

their analyses, both consider positions in options with exactly 28 days to expiration,

held from one expiration day to the subsequent expiration day in the next month.

Moreover, both analyses yield one observation for each stock-month combination.

As our sample allows for more than one observation for each stock-month combi-

nation, we aim at measuring momentum or reversal on the bucket level by means

of implied volatilities. Precisely, we use the rank of time t implied volatility with

respect to implied volatility over the last year at the daily frequency, normalized

by the maximum rank over the last year.
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IA3.3. Contract-Level

Data on contract level are obtained from OptionMetrics.

1. Call indicator (C ). Indicator equalling 1 if option is a call option, 0 otherwise.

2. Put indicator (P). Indicator equalling 1 if option is a put option, 0 otherwise.

3. Expiration flag (expiration month). Indicator equalling 1 if the option expires

within the observation month, 0 otherwise.

4. Time-to-maturity (ttm). The number of calendar years to maturity.

5. Moneyness (moneyness). The moneyness of the option contract, measured as

m =
K

S
,

where K denotes the strike price of the option contract and S the spot price of the

underlying stock.

6. Implied volatility (iv). Following Buchner and Kelly (2020), the Black and

Scholes (1973) implied volatility of the option contract.

7. Delta (delta). Following Buchner and Kelly (2020), the Black and Scholes (1973)

delta of the option contract, i.e., the sensitivity of the option with respect to point-

changes in the underlying.

8. Gamma (gamma). Following Buchner and Kelly (2020), the Black and Scholes

(1973) gamma of the option contract, i.e., the sensitivity of ∆ with respect to

changes in the underlying. We multiply gamma by the price of the underlying

stock divided by 100 to make it comparable in the cross-section.

9. Theta (theta). Following Buchner and Kelly (2020), the Black and Scholes (1973)

theta, i.e., the time-decay of the option value. We scale theta by the price of the

underlying stock to make it comparable in the cross-section.

10. Vega (vega). Following Buchner and Kelly (2020), the Black and Scholes (1973)

vega, i.e., the sensitivity of the option with respect to changes in the implied volatil-

ity. We scale vega by the price of the underlying stock to make it comparable in

the cross-section.

11. Volga (volga). Following Buchner and Kelly (2020), the Black and Scholes (1973)

volga, i.e, the sensitivity of vega with respect to changes in the implied volatility.

We scale volga by the price of the underlying stock to make it comparable in the

cross-section.

12. Embedded leverage (embedlev). Following Karakaya (2014), the embedded
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leverage of the option contract, defined as

Ω =
S

O
× |∆|,

where S denotes the stock price, O the options price and ∆ the delta of the option.

13. Open interest (oi). The open interest of the option contract.

14. Dollar open interest (doi). The dollar open interest of the option contract.

15. Mid price (mid). The mid price of the option, defined as

Obid +Oask

2
,

where Oask and Obid denote the ask and bid price of the option, respectively.

16. Bid-ask spread (optspread). The bid-ask spread of the option contract, mea-

sured as
2× (Obid −Oask)

Obid +Oask

,

where Oask and Obid denote the ask and bid price of the option, respectively.
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Appendix IA4. Classification of Characteristics

In this section we provide a detailed summary of the characteristics used in our analy-

ses. We consider a total of 270 characteristics, of which 77 are derived from option-based

information and the remainder from stock-based information. This information source

is provided in the table below. We further provide the instrument level the respective

characteristic relates to. Here, we consider three different levels. “Contract” information

relate to a single option contract. Examples for this are the open interest or the option’s

delta. Since flow-based measures cannot be estimated for individual option contracts due

to migrating moneyness and fleeting time-to-maturity, we construct various option buck-

ets, outlined in Section 4. The characteristics on this level are denoted by instrument

level “Bucket”. The final group is that of characteristics operating on the level of the

“Underlying” stock.

As a last set of information we also group the characteristics into 12 groups. Group

“Accruals” contains five characteristics, “Contract” six, “Frictions” contains four charac-

teristics, “Illiquidity” 28, “Industry” 90, “Informed Trading” 17, “Investment” 11, “Past

Prices” 13, “Profitability” 16, “Quality” 29, “Risk” 40, and “Value” 10. The grouping

for stock-based characteristics follows the intuition formed by Green et al. (2017) and

Jensen et al. (2021). We group the remaining option-based characteristics accordingly.

16

Electronic copy available at: https://ssrn.com/abstract=3895984



Table IA4.1: Classification of Characteristics

Feature Description Source Information Source Instrument Level Group

absacc Absolute accruals Green et al. (2017) Underlying Underlying Accruals

acc Working capital accruals Green et al. (2017) Underlying Underlying Accruals

aeavol Abnormal earnings announcement volume Green et al. (2017) Underlying Underlying Profitability

age # years since first Compustat coverage Green et al. (2017) Underlying Underlying Quality

agr Asset growth Green et al. (2017) Underlying Underlying Investment

ailliq Absolute illiquidity Cao and Wei (2010) Options Underlying Illiquidity

amihud Amihud illiquidity per bucket Amihud (2002) Options Bucket Illiquidity

atm civpiv At-the-money put vs. call implied volatility Options Underlying Informed Trading

atm dcivpiv Change in atm put vs. call implied volatility An et al. (2014) Options Underlying Informed Trading

baspread Bid-ask spread Green et al. (2017) Underlying Underlying Illiquidity

bear beta Bear beta Lu and Murray (2019) Underlying Underlying Risk

beta Beta Green et al. (2017) Underlying Underlying Risk

betasq Beta squared Green et al. (2017) Underlying Underlying Risk

bm Book-to-market Green et al. (2017) Underlying Underlying Value

bm ia Industry-adjusted book-to-market Green et al. (2017) Underlying Underlying Value

bucket dvol Option bucket dollar volume Options Bucket Illiquidity

bucket vol Option bucket volume Options Bucket Illiquidity

bucket vol share Relative option bucket volume Options Bucket Illiquidity

C Call indicator Options Contract Contract

cash Cash holdings Green et al. (2017) Underlying Underlying Quality

cashdebt Cash flow to debt Green et al. (2017) Underlying Underlying Value

cashpr Cash productivity Green et al. (2017) Underlying Underlying Profitability

cfp Cash-flow-to-price ratio Green et al. (2017) Underlying Underlying Risk

cfp ia Industry-adjusted cash-flow-to-price ratio Green et al. (2017) Underlying Underlying Risk

chatoia Industry-adjusted change in asset turnover Green et al. (2017) Underlying Underlying Quality

chcsho Change in shares outstanding Green et al. (2017) Underlying Underlying Investment

chempia Industry-adjusted change in employees Green et al. (2017) Underlying Underlying Investment

chinv Change in inventory Green et al. (2017) Underlying Underlying Investment

chmom Change in 6-month momentum Green et al. (2017) Underlying Underlying Past Prices

chpmia Industry-adjusted change in profit margin Green et al. (2017) Underlying Underlying Profitability

chtx Change in tax expense Green et al. (2017) Underlying Underlying Quality

cinvest Corporate investment Green et al. (2017) Underlying Underlying Investment

Continued on Next Page
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Table IA4.1 from previous page

Feature Description Source Information Source Instrument Level Group

civpiv Near-the-money put vs. call implied volatility Bali and Hovakimian (2009) Options Underlying Informed Trading

close Close price Eisdorfer et al. (2020) Underlying Underlying Informed Trading

convind Convertible debt indicator Green et al. (2017) Underlying Underlying Risk

currat Current ratio Green et al. (2017) Underlying Underlying Accruals

defrisk Default risk Vasquez and Xiao (2021) Underlying Underlying Risk

dciv Change in atm call implied volatility An et al. (2014) Options Underlying Informed Trading

delta Delta Buchner and Kelly (2020) Options Contract Risk

depr Depreciation / PP&E Green et al. (2017) Underlying Underlying Investment

divi Dividend initiation Green et al. (2017) Underlying Underlying Value

divo Dividend omission Green et al. (2017) Underlying Underlying Value

dolvol Dollar trading volume Green et al. (2017) Underlying Underlying Profitability

doi Dollar open interest Options Contract Illiquidity

dpiv Change in atm put implied volatility An et al. (2014) Options Underlying Informed Trading

dso Stock vs. option volume in USD Roll et al. (2010) Options Underlying Informed Trading

dvol Dollar trading volume Cao and Wei (2010) Options Underlying Illiquidity

dy Dividend to price Green et al. (2017) Underlying Underlying Value

ear Earnings announcement return Green et al. (2017) Underlying Underlying Profitability

egr Growth in common shareholder equity Green et al. (2017) Underlying Underlying Investment

embedlev Embedded Leverage Karakaya (2014) Options Contract Risk

ep Earnings to price Green et al. (2017) Underlying Underlying Value

expiration month Expiration month indicator Options Contract Informed Trading

fric Contribution of market frictions to expected returns Hiraki and Skiadopoulos (2020) Options Underlying Frictions

gamma Gamma Buchner and Kelly (2020) Options Contract Risk

gammaps Pastor and Stambaugh liquidity measure Pástor and Stambaugh (2003) Options Bucket Illiquidity

gma Gross profitability Green et al. (2017) Underlying Underlying Quality

grcapx Growth in capital expenditures Green et al. (2017) Underlying Underlying Profitability

grltnoa Growth in long-term net operating assets Green et al. (2017) Underlying Underlying Profitability

herf Industry sales concentration Green et al. (2017) Underlying Underlying Quality

hire Employee growth rate Green et al. (2017) Underlying Underlying Profitability

hkurt Historic kurtosis Options Bucket Risk

hskew Historic skewness Options Bucket Risk

hvol Historic Volatility Options Bucket Risk

idiovol Idiosyncratic return volatility Green et al. (2017) Underlying Underlying Risk
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Feature Description Source Information Source Instrument Level Group

ill Amihud Illiquidity Green et al. (2017) Underlying Underlying Illiquidity

illiq Illiquidity Bao et al. (2011) Options Bucket Illiquidity

ind 10 Industry code Underlying Underlying Industry

ind 11 Industry code Underlying Underlying Industry

ind 12 Industry code Underlying Underlying Industry

ind 13 Industry code Underlying Underlying Industry

ind 14 Industry code Underlying Underlying Industry

ind 15 Industry code Underlying Underlying Industry

ind 16 Industry code Underlying Underlying Industry

ind 17 Industry code Underlying Underlying Industry

ind 18 Industry code Underlying Underlying Industry

ind 19 Industry code Underlying Underlying Industry

ind 20 Industry code Underlying Underlying Industry

ind 21 Industry code Underlying Underlying Industry

ind 22 Industry code Underlying Underlying Industry

ind 23 Industry code Underlying Underlying Industry

ind 24 Industry code Underlying Underlying Industry

ind 25 Industry code Underlying Underlying Industry

ind 26 Industry code Underlying Underlying Industry

ind 27 Industry code Underlying Underlying Industry

ind 28 Industry code Underlying Underlying Industry

ind 29 Industry code Underlying Underlying Industry

ind 30 Industry code Underlying Underlying Industry

ind 31 Industry code Underlying Underlying Industry

ind 32 Industry code Underlying Underlying Industry

ind 33 Industry code Underlying Underlying Industry

ind 34 Industry code Underlying Underlying Industry

ind 35 Industry code Underlying Underlying Industry

ind 36 Industry code Underlying Underlying Industry

ind 37 Industry code Underlying Underlying Industry

ind 38 Industry code Underlying Underlying Industry

ind 39 Industry code Underlying Underlying Industry

ind 40 Industry code Underlying Underlying Industry
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ind 41 Industry code Underlying Underlying Industry

ind 42 Industry code Underlying Underlying Industry

ind 43 Industry code Underlying Underlying Industry

ind 44 Industry code Underlying Underlying Industry

ind 45 Industry code Underlying Underlying Industry

ind 46 Industry code Underlying Underlying Industry

ind 47 Industry code Underlying Underlying Industry

ind 48 Industry code Underlying Underlying Industry

ind 49 Industry code Underlying Underlying Industry

ind 50 Industry code Underlying Underlying Industry

ind 51 Industry code Underlying Underlying Industry

ind 52 Industry code Underlying Underlying Industry

ind 53 Industry code Underlying Underlying Industry

ind 54 Industry code Underlying Underlying Industry

ind 55 Industry code Underlying Underlying Industry

ind 56 Industry code Underlying Underlying Industry

ind 57 Industry code Underlying Underlying Industry

ind 58 Industry code Underlying Underlying Industry

ind 59 Industry code Underlying Underlying Industry

ind 60 Industry code Underlying Underlying Industry

ind 61 Industry code Underlying Underlying Industry

ind 62 Industry code Underlying Underlying Industry

ind 63 Industry code Underlying Underlying Industry

ind 64 Industry code Underlying Underlying Industry

ind 65 Industry code Underlying Underlying Industry

ind 66 Industry code Underlying Underlying Industry

ind 67 Industry code Underlying Underlying Industry

ind 68 Industry code Underlying Underlying Industry

ind 69 Industry code Underlying Underlying Industry

ind 70 Industry code Underlying Underlying Industry

ind 71 Industry code Underlying Underlying Industry

ind 72 Industry code Underlying Underlying Industry

ind 73 Industry code Underlying Underlying Industry
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ind 74 Industry code Underlying Underlying Industry

ind 75 Industry code Underlying Underlying Industry

ind 76 Industry code Underlying Underlying Industry

ind 77 Industry code Underlying Underlying Industry

ind 78 Industry code Underlying Underlying Industry

ind 79 Industry code Underlying Underlying Industry

ind 80 Industry code Underlying Underlying Industry

ind 81 Industry code Underlying Underlying Industry

ind 82 Industry code Underlying Underlying Industry

ind 83 Industry code Underlying Underlying Industry

ind 84 Industry code Underlying Underlying Industry

ind 85 Industry code Underlying Underlying Industry

ind 86 Industry code Underlying Underlying Industry

ind 87 Industry code Underlying Underlying Industry

ind 88 Industry code Underlying Underlying Industry

ind 89 Industry code Underlying Underlying Industry

ind 90 Industry code Underlying Underlying Industry

ind 91 Industry code Underlying Underlying Industry

ind 92 Industry code Underlying Underlying Industry

ind 93 Industry code Underlying Underlying Industry

ind 94 Industry code Underlying Underlying Industry

ind 95 Industry code Underlying Underlying Industry

ind 96 Industry code Underlying Underlying Industry

ind 97 Industry code Underlying Underlying Industry

ind 98 Industry code Underlying Underlying Industry

ind 99 Industry code Underlying Underlying Industry

indmom Industry momentum Green et al. (2017) Underlying Underlying Past Prices

invest Capital expenditures and inventory Green et al. (2017) Underlying Underlying Investment

iv Implied volatility Buchner and Kelly (2020) Options Contract Contract

iv rank Implied volatility rank vs. last year Options Bucket Past Prices

ivarud30 Option implied variance asymmetry Huang and Li (2019) Options Underlying Risk

ivd Implied volatility duration Schlag et al. (2020) Options Underlying Risk

ivrv Implied volatility minus realized volatility Bali and Hovakimian (2009) Options Underlying Risk
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ivrv ratio Implied volatility minus realized volatility ratio Options Underlying Risk

ivslope Implied volatility slope Vasquez (2017) Options Underlying Risk

ivvol Volatility of atm volatility Baltussen et al. (2018) Options Underlying Risk

ldso Log changes in the stock to option volume Roll et al. (2010) Options Underlying Informed Trading

lev Leverage Green et al. (2017) Underlying Underlying Quality

lgr Growth in long-term debt Green et al. (2017) Underlying Underlying Quality

lso Log of stock vs. option volume Roll et al. (2010) Options Underlying Informed Trading

maxret Maximum daily return Green et al. (2017) Underlying Underlying Risk

mid Option mid price Options Contract Contract

modos Modified stock vs. option volume Johnson and So (2012) Options Underlying Informed Trading

mom12m 12-month momentum Green et al. (2017) Underlying Underlying Past Prices

mom1m 1-month momentum Green et al. (2017) Underlying Underlying Past Prices

mom36m 36-month momentum Green et al. (2017) Underlying Underlying Past Prices

mom6m 6-month momentum Green et al. (2017) Underlying Underlying Past Prices

moneyness Moneyness Options Contract Contract

ms Financial statement score Green et al. (2017) Underlying Underlying Quality

mve Size Green et al. (2017) Underlying Underlying Quality

mve ia Industry-adjusted size Green et al. (2017) Underlying Underlying Quality

nincr Number of earnings increases Green et al. (2017) Underlying Underlying Quality

nopt Number of options trading Options Underlying Illiquidity

ocgo Disposition Effect Bergsma et al. (2020) Options Bucket Past Prices

oi Open interest Options Contract Illiquidity

oistock Open interest vs. stock volume Options Bucket Informed Trading

operprof Operating profitability Green et al. (2017) Underlying Underlying Quality

optspread Option bid-ask spread Options Contract Illiquidity

orgcap Organization capital Green et al. (2017) Underlying Underlying Quality

P Put-flag Options Contract Contract

pba Proportional bid-ask spread Cao and Wei (2010) Options Underlying Illiquidity

pchcapx ia Industry-adjusted % change in capital expenditures Green et al. (2017) Underlying Underlying Investment

pchcurrat % change in current ratio Green et al. (2017) Underlying Underlying Quality

pchdepr % change in depreciation Green et al. (2017) Underlying Underlying Quality

pchgm pchsale % change in gross margin - % change in sales Green et al. (2017) Underlying Underlying Quality

pchquick % change in quick ratio Green et al. (2017) Underlying Underlying Quality
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pchsale pchinvt % change in sales - % change in inventory Green et al. (2017) Underlying Underlying Profitability

pchsale pchrect % change in sales - % change in A/R Green et al. (2017) Underlying Underlying Profitability

pchsale pchxsga % change in sales - % change in SG&A Green et al. (2017) Underlying Underlying Profitability

pchsaleinv % change in sales-to-inventory Green et al. (2017) Underlying Underlying Profitability

pcpv Put-call parity deviations Ofek et al. (2004) Options Underlying Frictions

pcratio Put-call ratio Blau et al. (2014) Options Underlying Informed Trading

pctacc Percent accruals Green et al. (2017) Underlying Underlying Accruals

pfht Modified illiquidity measure based on zero returns Fong et al. (2017) Options Bucket Illiquidity

pifht An extended FHT measured based on zero returns Options Bucket Illiquidity

pilliq Percentage illiquidity Cao and Wei (2010) Options Underlying Illiquidity

piroll Extended Roll’s measure Goyenko et al. (2009) Options Bucket Illiquidity

pricedelay Price delay Green et al. (2017) Underlying Underlying Illiquidity

ps Financial statements score (Piotroski) Green et al. (2017) Underlying Underlying Quality

pzeros Illiquidity measure based on zero returns Lesmond et al. (1999) Options Bucket Illiquidity

quick Quick ratio Green et al. (2017) Underlying Underlying Quality

rd R&D increase Green et al. (2017) Underlying Underlying Investment

rd mve R&D to market capitalization Green et al. (2017) Underlying Underlying Quality

rd sale R&D to sales Green et al. (2017) Underlying Underlying Quality

realestate Real estate holdings Green et al. (2017) Underlying Underlying Quality

retvol Return volatility Green et al. (2017) Underlying Underlying Risk

rnk182 182-day risk-neutral kurtosis Options Underlying Risk

rnk273 273-day risk-neutral kurtosis Options Underlying Risk

rnk30 30-day risk-neutral kurtosis Options Underlying Risk

rnk365 365-day risk-neutral kurtosis Options Underlying Risk

rnk91 91-day risk-neutral kurtosis Options Underlying Risk

rns182 182-day risk-neutral skewness Borochin et al. (2020) Options Underlying Risk

rns273 273-day risk-neutral skewness Borochin et al. (2020) Options Underlying Risk

rns30 30-day risk-neutral skewness Borochin et al. (2020) Options Underlying Risk

rns365 365-day risk-neutral skewness Borochin et al. (2020) Options Underlying Risk

rns91 91-day risk-neutral skewness Borochin et al. (2020) Options Underlying Risk

roaq Return on assets Green et al. (2017) Underlying Underlying Profitability

roavol Earnings volatility Green et al. (2017) Underlying Underlying Quality

roeq Return on equity Green et al. (2017) Underlying Underlying Profitability
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roic Return on invested capital Green et al. (2017) Underlying Underlying Profitability

roll Roll’s measure of illiquidity Roll (1984) Options Bucket Illiquidity

rsup Revenue surprise Green et al. (2017) Underlying Underlying Profitability

rv Realized variance Cao et al. (2019) Underlying Underlying Risk

salecash Sales to cash Green et al. (2017) Underlying Underlying Value

saleinv Sales to inventory Green et al. (2017) Underlying Underlying Value

salerec Sales to receivables Green et al. (2017) Underlying Underlying Value

season1 Seasonal return - 1 year historical Heston and Sadka (2008); Keloharju et al. (2016) Underlying Underlying Past Prices

season2 Seasonal return - 2 year historical Heston and Sadka (2008); Keloharju et al. (2016) Underlying Underlying Past Prices

season3 Seasonal return - 3 year historical Heston and Sadka (2008); Keloharju et al. (2016) Underlying Underlying Past Prices

season4 Seasonal return - 4 year historical Heston and Sadka (2008); Keloharju et al. (2016) Underlying Underlying Past Prices

secured Secured debt Green et al. (2017) Underlying Underlying Quality

securedind Secured debt indicator Green et al. (2017) Underlying Underlying Quality

sgr Sales growth Green et al. (2017) Underlying Underlying Investment

shrtfee Implied shorting fees Muravyev et al. (2021) Options Underlying Frictions

sin Sin stocks Green et al. (2017) Underlying Underlying Quality

skewiv IV skew Xing et al. (2010) Options Underlying Informed Trading

so Stock vs. option volume Roll et al. (2010) Options Underlying Informed Trading

sp Sales to price Green et al. (2017) Underlying Underlying Quality

std dolvol Volatility of liquidity (dollar trading volume) Green et al. (2017) Underlying Underlying Illiquidity

std turn Volatility of liquidity (share turnover) Green et al. (2017) Underlying Underlying Illiquidity

stdacc Accrual volatility Green et al. (2017) Underlying Underlying Accruals

stdamihud Standard deviation of Amihud’s illiquidity measure Options Bucket Illiquidity

stdcf Cash flow volatility Green et al. (2017) Underlying Underlying Risk

tang Dept capacity/firm tangibility Green et al. (2017) Underlying Underlying Quality

tb Tax income to book income Green et al. (2017) Underlying Underlying Past Prices

theta Theta Buchner and Kelly (2020) Options Contract Risk

tlm30 Tail loss measure Vilkov and Xiao (2012) Options Underlying Risk

toi Total option open interest Options Underlying Illiquidity

ttm Time-to-maturity Options Contract Contract

turn Share turnover Green et al. (2017) Underlying Underlying Risk

turnover Option turnover Options Bucket Illiquidity

underlying return Return of the underlying Underlying Underlying Frictions
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vega Vega Buchner and Kelly (2020) Options Contract Risk

vol Trading volume in options Options Underlying Illiquidity

volga Volga Buchner and Kelly (2020) Options Contract Risk

volunc Volatility uncertainty Cao et al. (2019) Options Underlying Risk

vs change Change in weighted put-call spread Cremers and Weinbaum (2010) Options Underlying Informed Trading

vs level Weighted put-call spread Cremers and Weinbaum (2010) Options Underlying Informed Trading

zerotrade Zero trading days Green et al. (2017) Underlying Underlying Illiquidity

Not Continued on Next Page

The table provides a detailed summary of the characteristics. For each characteristic, the table shows the name (Feature), a description of
the characteristic (Description) and the source, if applicable (Source). Furthermore, it displays if the characteristic is derived form option-based
or stock-based information (Information Source), the instrument level the characteristic relates to (Instrument Level), and to which characteristic
group (Group) it belongs to.
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Appendix IA5. Additional Summary Statistics

IA5.1. Summary Statistics for the Underlying Stocks

Mean Std 10-Pctl Q1 Median Q3 90-Pctl

Panel A: Time-Series Distribution

Number of stocks in the sample each month 1747.31 142.84 1560.1 1664.0 1755.5 1850.75 1922.2
Stock coverage of stock universe (EW) 38.05 10.09 24.88 28.07 40.04 46.64 50.98
Stock coverage of stock universe (VW) 83.81 5.0 77.26 81.25 84.63 86.98 89.63
Stock traded at NYSE or AMEX 51.86 2.36 48.74 50.95 52.01 53.32 54.35
Stock already included in previous month 86.11 5.87 82.36 84.31 86.56 88.74 90.25

Panel B: Time-Series Average of Cross-Sectional Distributions

Firm size in million 7945 27163 240 550 1516 4793 15532
Firm size CSRP percentile 72 18 45 59 75 87 94
Firm volatility CSRP percentile 45 25 11 23 44 66 81

Panel C: Time-Series Average of Industry Distribution

FF-12 Industry Optionable Stocks CRSP sample FF-12 Industry Optionable Stocks CRSP sample

Consumer nondurables 4.48% 4.92% Telecom 3.47% 2.56%
Consumer durables 0.52% 0.47% Utilities 2.74% 2.21%
Manufacturing 9.34% 8.15% Wholesale 11.11% 8.49%
Energy 4.92% 2.68% Healthcare 11.4% 9.24%
Chemicals 2.45% 1.59% Finance 10.08% 24.08%
Business Equipment 20.22% 14.44% Other 19.28% 21.16%

Table IA5.1: Summary Statistics of Underlying Stocks

The table reports summary statistics for the sample of underlying stocks. We compare our sample of
underlying stocks with all stocks in CRSP, which have share codes 10 or 11 and exchange codes 1, 2,
3, 31, 32, 33. Panel A reports the time-series summary statistics and Panel B reports the time-series
averages of the cross-sectional distribution. Percent coverage of the stock universe (EW) is the number
of stocks in the sample, divided by the total number of CRSP stocks. Percent coverage of the stock
universe (VW) is the total market capitalization of sample stocks divided by the total CRSP market
capitalization. Percent coverage of stocks traded at NYSE or AMEX is the number of stocks in the
sample trading at NYSE or AMEX, divided by the total number of stocks. The firm size percentiles
are computed using the CRSP sample. Panel C reports time-series averages of industry distributions
of the Fama-French 12-industry classification. The industry distributions are reported for the sample of
optionable stocks as well as for the CRSP universe. The sample period is from January 1996 to December
2020.
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IA5.2. Delta-Hedged Option Return per Bucket

Table IA5.2: Delta-Hedged Option Return per Bucket

Mean Sd 10-Pctl Q1 Median Q3 90-Pctl

Panel A: Long Term (N=6,903,957)

Delta-Hedged Return 0.15 5.03 -4.15 -1.84 -0.27 1.47 4.73

Days to Maturity 269.01 185.56 112.0 141.0 200.0 324.0 570.0

Moneyness 1.04 0.38 0.71 0.86 1.0 1.15 1.36

Implied volatility 45.85 23.08 23.55 29.88 40.13 55.64 75.54

Absolute Delta 0.44 0.24 0.13 0.25 0.43 0.63 0.79

Panel B: Long Term Atm (N=2,495,362)

Delta-Hedged Return 0.2 3.63 -2.85 -1.41 -0.22 1.24 3.6

Days to Maturity 241.32 167.94 112.0 141.0 176.0 234.0 506.0

Moneyness 1.0 0.06 0.93 0.96 1.0 1.05 1.08

Implied volatility 38.96 18.75 20.94 26.02 34.42 46.64 62.97

Absolute Delta 0.5 0.12 0.33 0.4 0.5 0.6 0.66

Panel C: Long Term Itm Call (N=865,963)

Delta-Hedged Return 0.14 3.91 -2.99 -1.25 -0.14 1.09 3.46

Days to Maturity 288.93 198.5 113.0 141.0 203.0 386.0 628.0

Moneyness 0.77 0.12 0.59 0.71 0.8 0.86 0.89

Implied volatility 52.16 22.33 29.0 36.08 47.1 63.07 82.1

Absolute Delta 0.81 0.07 0.72 0.75 0.81 0.87 0.92

Continued on Next Page
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Mean Sd 10-Pctl Q1 Median Q3 90-Pctl

Panel D: Long Term Itm Put (N=639,054)

Delta-Hedged Return 0.11 2.45 -1.98 -0.85 -0.09 0.8 2.38

Days to Maturity 280.43 192.15 113.0 141.0 203.0 355.0 598.0

Moneyness 1.42 0.73 1.13 1.16 1.25 1.44 1.79

Implied volatility 54.63 31.31 25.24 33.16 46.53 67.18 93.66

Absolute Delta 0.69 0.15 0.5 0.59 0.69 0.8 0.89

Panel E: Long Term Otm Call (N=1,528,873)

Delta-Hedged Return 0.25 7.3 -6.89 -3.29 -0.44 2.96 8.14

Days to Maturity 285.64 193.94 113.0 143.0 204.0 381.0 603.0

Moneyness 1.36 0.35 1.13 1.17 1.26 1.42 1.67

Implied volatility 47.24 23.26 23.87 30.61 41.46 58.08 78.48

Absolute Delta 0.3 0.14 0.12 0.19 0.29 0.4 0.48

Panel F: Long Term Otm Put (N=1,374,705)

Delta-Hedged Return -0.03 5.58 -5.05 -2.71 -0.7 1.65 5.36

Days to Maturity 282.94 188.97 113.0 142.0 204.0 358.0 598.0

Moneyness 0.74 0.13 0.55 0.67 0.78 0.85 0.88

Implied volatility 48.75 22.56 27.2 33.19 43.05 58.12 77.45

Absolute Delta 0.16 0.08 0.05 0.1 0.16 0.23 0.27

Panel G: Short Term (N=5,225,887)

Delta-Hedged Return -0.21 5.36 -4.65 -2.07 -0.43 1.04 4.1

Days to Maturity 44.39 23.02 17.0 21.0 49.0 52.0 80.0

Moneyness 1.01 0.18 0.84 0.92 1.0 1.07 1.17

Implied volatility 50.08 28.44 23.33 30.7 42.74 61.37 86.07

Absolute Delta 0.48 0.26 0.14 0.26 0.47 0.69 0.84

Panel H: Short Term Atm (N=3,242,014)

Delta-Hedged Return -0.11 4.08 -3.67 -1.79 -0.4 0.99 3.5

Days to Maturity 40.22 22.35 17.0 19.0 46.0 51.0 79.0

Moneyness 1.0 0.05 0.93 0.96 1.0 1.04 1.07

Implied volatility 41.61 21.33 21.09 26.94 36.37 50.33 68.81

Absolute Delta 0.49 0.19 0.24 0.35 0.49 0.63 0.74

Continued on Next Page
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Panel I: Short Term Itm Call (N=471,757)

Delta-Hedged Return 0.19 5.14 -2.72 -1.15 -0.23 0.61 2.71

Days to Maturity 49.39 22.92 18.0 22.0 50.0 77.0 81.0

Moneyness 0.82 0.08 0.72 0.79 0.85 0.88 0.9

Implied volatility 65.11 30.15 34.89 43.82 58.16 79.04 103.74

Absolute Delta 0.85 0.07 0.75 0.8 0.85 0.9 0.94

Panel J: Short Term Itm Put (N=382,619)

Delta-Hedged Return -0.41 3.87 -2.59 -1.14 -0.31 0.46 1.96

Days to Maturity 47.64 23.03 18.0 22.0 50.0 77.0 80.0

Moneyness 1.29 0.34 1.12 1.14 1.19 1.31 1.53

Implied volatility 72.13 41.5 33.13 43.58 61.24 88.33 124.21

Absolute Delta 0.8 0.11 0.64 0.72 0.81 0.89 0.94

Panel K: Short Term Otm Call (N=537,456)

Delta-Hedged Return -0.32 9.09 -9.78 -5.0 -0.96 3.36 9.64

Days to Maturity 54.05 21.64 21.0 47.0 50.0 78.0 81.0

Moneyness 1.23 0.17 1.12 1.14 1.18 1.26 1.4

Implied volatility 61.01 30.5 30.14 38.92 53.55 76.05 101.68

Absolute Delta 0.21 0.11 0.08 0.13 0.2 0.29 0.36

Panel L: Short Term Otm Put (N=592,041)

Delta-Hedged Return -0.85 7.47 -7.99 -4.29 -1.43 1.42 6.3

Days to Maturity 52.39 22.06 19.0 46.0 50.0 78.0 81.0

Moneyness 0.82 0.09 0.7 0.78 0.84 0.88 0.89

Implied volatility 60.34 29.45 31.8 39.81 52.79 73.11 98.45

Absolute Delta 0.14 0.07 0.05 0.08 0.13 0.19 0.24

Not Continued on Next Page

The table reports the descriptive statistics of delta-hedged option returns for the period 1996 to
2020. Delta-hedged option returns are measured over a period of one calendar month, or until option
maturity. Delta-hedging is performed daily. Days to maturity is the number of calendar days until option
expiration. Moneyness is the ratio between the underlying’s stock price and the option’s strike price.
Option implied volatility is provided by OptionMetrics. Absolute delta is the absolute value of the Black-
Scholes delta. We differentiate between different parts of the time-to-maturity and moneyness domain
of a single option, which we refer to as “buckets”, as defined in Section 4. Specifically, we separately
consider predictability for short- and long-term options (≤ vs. > 90 days to maturity), in-the-money
(itm: K/S > 1.1 for puts, K/S < 0.9 for calls), out-of-the-money (otm: K/S < 0.9 for puts, K/S < 1.1
for calls) calls and puts, and at-the-money options (atm: 0.9 ≤ K/S ≤ 1.1), as well as time-to-maturity
and moneyness combinations. Each panel shows statistics for pooled options belonging to one bucket.
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IA5.3. Number of Options per Bucket

Mean Sd 10-Pctl Q1 Median Q3 90-Pctl

Long Term 14.98 26.69 1.05 2.38 5.86 16.48 39.51
Long Term Atm 6.47 8.98 1.0 1.69 3.31 7.78 15.89
Long Term Itm Call 3.58 5.29 1.0 1.0 1.9 3.99 7.91
Long Term Itm Put 3.33 4.49 1.0 1.0 1.83 3.68 7.51
Long Term Otm Call 4.87 7.09 1.0 1.08 2.45 5.75 11.41
Long Term Otm Put 5.34 8.57 1.0 1.03 2.4 6.16 12.76
Short Term 10.93 15.89 1.0 2.4 5.83 13.35 26.48
Short Term Atm 7.38 8.84 1.0 2.28 4.44 9.36 17.38
Short Term Itm Call 2.4 2.77 1.0 1.0 1.42 2.7 4.74
Short Term Itm Put 2.43 2.79 1.0 1.0 1.37 2.68 4.9
Short Term Otm Call 2.69 3.34 1.0 1.0 1.54 3.03 5.47
Short Term Otm Put 3.08 4.17 1.0 1.0 1.74 3.48 6.42

Table IA5.3: Number of Options for Option Buckets

The table reports summary statistics on the number of options within certain regions of the time-to-
maturity and moneyness domain, denoted by ”buckets”, as defined in Section 4. The time-to-maturity
and moneyness domain is divided into short- and long-term options (≤ vs. > 90 days to maturity), in-
the-money (itm: K/S > 1.1 for puts, K/S < 0.9 for calls) out-of-the-money (otm: K/S < 0.9 for puts,
K/S < 1.1 for calls) calls and puts, and at-the-money options (atm: 0.9 ≤ K/S ≤ 1.1), as well as time-
to-maturity and moneyness combinations. We first compute descriptive statistics for each underlying
stock and subsequently take the average across all stocks in the sample. Values here correspond to the
number of options per underlying stock. The sample period is from January 1996 to December 2020.
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Appendix IA6. Model Comparison
Additional Analyses

IA6.1. Cross-sectional Diebold and Mariano (1995) Tests

Panel A: Diebold and Mariano (1995) Cross-Sectional Forecast Comparison

Lasso ENet PCR PLS L-En GBR RF Dart FFN N-En

Ridge 1.47 1.38 −0.93 -4.86 3.25 8.94 5.63 7.45 10.02 10.23
Lasso −0.27 -3.11 -5.21 3.88 4.53 3.91 3.55 5.09 6.10
ENet -3.27 -4.95 3.77 4.68 4.14 3.59 5.19 6.19
PCR -2.56 6.06 6.22 6.49 5.14 6.08 8.04
PLS 6.28 10.74 8.06 9.49 11.21 11.22
L-En 3.64 2.86 2.92 3.47 5.97
GBR -3.47 0.52 -1.98 4.56
RF 2.18 1.13 8.22
Dart −1.36 2.05
FFN 4.56

The table shows Diebold and Mariano (1995) test statistics following Equation (8), using cross-sectional
errors as inputs, for the nine models and two ensembles considered in the paper. A positive number
indicates that the model in the column outperforms the row model. If it is highlighted in light blue
(blue), this outperformance is statistically significant at the 1% level (5% level).
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IA6.2. Cross-sectional Comparison between N-En and L-En

N-En beats L-En in 86.5% of the months when tasked with predicting future cross-

sectional return spreads for delta-hedged single-equity options:
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Fig. IA6.1. Comparing Linear and Nonlinear Ensembles – R2
OS;XS

The left panel of the figure shows monthly cross-sectional R2
OS;XS for the testing sample from 2003

through 2020 for the linear (L-En) and nonlinear (N-En) ensembles. The right panel compares the two
by showing the resulting R2

OS;XS for L-En on the x-axis and for N-En and the y axis. The green-shaded
area represents a relative outperformance in terms of predictability for N-En, while the red-shaded
area represents the opposite. The five red circles represent the Coronavirus selloff from December 2019
through April 2020.
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Appendix IA7. Machine Learning Portfolios
Additional Analyses

IA7.1. Performance for ML Portfolios using Value-weighted Returns

L-En N-En
Pred Avg SD SR Pred Avg SD SR N vs. L

Lo −1.308 −0.967 1.335 −0.725 −1.612 −1.556 1.845 −0.843 ***
2 −0.722 −0.482 1.450 −0.332 −0.709 −0.637 1.564 −0.408
3 −0.491 −0.319 1.434 −0.222 −0.397 −0.393 1.393 −0.282
4 −0.321 −0.220 1.432 −0.153 −0.223 −0.220 1.272 −0.173
5 −0.178 −0.154 1.520 −0.101 −0.098 −0.125 1.260 −0.099
6 −0.047 −0.096 1.488 −0.065 0.006 −0.077 1.321 −0.059
7 0.082 −0.026 1.485 −0.017 0.109 −0.038 1.444 −0.027
8 0.219 0.027 1.475 0.018 0.228 0.042 1.494 0.028
9 0.385 0.084 1.450 0.058 0.393 0.135 1.607 0.084
Hi 0.695 0.314 1.580 0.199 0.854 0.460 1.852 0.248

H-L 2.004 1.281 1.240 1.033 2.466 2.016 1.466 1.375 ***
(11.52) (8.64) (14.28) (9.57)

Table IA7.1: Trading on Value-weighted Machine Learning Predictions

The table shows returns to option portfolios sorted by the predictions made by the linear (L-En) and
nonlinear ensemble (N-En) methods and weighted by the respective option’s dollar open interest. Pred
denotes the average predicted return within the respective portfolio, Avg the average realized return, SD
the standard deviation of realized returns and finally SR the realized Sharpe ratio. All values are given
per month. The last column (N vs. L) gives the significance of comparing the mean realized returns for
N-En and L-En. ***, **, * correspond to N-En beating L-En significantly at the 1%, 5%, 10% level,
respectively.
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IA7.2. Summary Statistics for ML Portfolios – Put and Call Composition
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Fig. IA7.1. Machine Learning Portfolios – Moneyness and Days-to-maturity

This figure shows the average moneyness and time-to-maturity for the decile portfolios sorted on expected
returns following the predictions of the nonlinear ensemble N-En. We split the information by put and
call options included.
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Fig. IA7.2. Machine Learning Portfolios – Spreads of the Options and the Underlyings

This figure shows the bid-ask spread of the options included in the left and of the underlying stocks
in the right panel for the decile portfolios sorted on expected returns following the predictions of the
nonlinear ensemble N-En. We split the information by put and call options included.
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Fig. IA7.3. Machine Learning Portfolios – Greeks

This figure shows option Greeks for the decile portfolios sorted on expected returns following the pre-
dictions of the nonlinear ensemble N-En. We split the information by put and call options included. We
show the (unhedged) delta of the option, the gamma, vega, and theta. gamma is expressed for a 1%
move in the underlying stock (gamma× S

100 ) and vega and theta in terms of the underlying stock price
( x
S for x ∈ [vega, theta]).
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Fig. IA7.4. Machine Learning Portfolios – Call Share over Time

The figure shows the share of call options included in the portfolios sorted on expected returns following
the predictions of the nonlinear ensemble N-En. We provide average numbers per year in our testing
sample from 2003 through 2020.
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Fig. IA7.5. Machine Learning Portfolio – Underlying-Option Concentration

The figure shows the share of underlying stocks for which all options written on that stocks are classified
into a single portfolio by the nonlinear ensemble N-En. We provide average numbers per year in our
testing sample from 2003 through 2020.
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Fig. IA7.6. ML Portfolio Transition Matrix by Option Bucket

The figure shows the relative likelihood of options for a particular underlying transitioning from one
portfolio to another in the next month. Since we cannot estimate this transition for single options
due to their fleeting moneyness and time-to-maturity, we use changes in the portfolio mode for a given
Permno-bucket combination as an approximation. Buckets are defined as in Section 4.3.
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Fig. IA7.7. ML Portfolio Transition Matrix by Underlying

The figure shows the relative likelihood of options for a particular underlying transitioning from one
portfolio to another in the next month. Since we cannot estimate this transition for single options due to
their fleeting moneyness and time-to-maturity, we use changes in the portfolio mode for a given Permno
as an approximation.
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IA7.3. Performance for ML Portfolios in Different Market Phases

L-En N-En
Pred Avg SD SR Pred Avg SD SR N vs. L

Low VIX 1.689 1.725 0.584 2.953 2.428 2.321 0.726 3.197 ***
(21.03) (7.28) (26.34) (7.24)

High VIX 2.181 2.112 1.634 1.293 2.683 2.936 1.598 1.838 ***
(8.99) (7.36) (10.91) (9.59)

Low EPU 2.007 1.876 0.750 2.503 2.672 2.508 0.827 3.034 ***
(21.15) (5.84) (23.64) (9.00)

High EPU 1.860 1.959 1.587 1.234 2.437 2.747 1.599 1.718 ***
(8.49) (7.37) (10.01) (8.78)

Neg. CFNAI 1.904 1.931 1.430 1.350 2.455 2.696 1.469 1.835 ***
(9.29) (5.61) (11.63) (7.64)

Pos. CFNAI 1.967 1.902 0.982 1.938 2.667 2.550 1.012 2.520 ***
(15.33) (4.48) (14.93) (5.44)

Low FED Stress 1.832 1.764 0.854 2.065 2.534 2.418 0.942 2.567 ***
(19.30) (5.17) (19.35) (6.03)

High FED Stress 2.160 2.256 1.780 1.267 2.602 3.090 1.724 1.792 ***
(7.79) (6.35) (10.01) (7.95)

Low SENT 2.060 1.780 1.170 1.521 2.603 2.464 1.180 2.089 ***
(13.77) (4.49) (16.10) (5.42)

High SENT 1.860 2.159 0.946 2.281 2.578 2.683 1.045 2.568 **
(15.78) (7.41) (10.92) (9.22)

Table IA7.2: Trading on Machine Learning Predictions – Market Phases

The table shows returns to option portfolios sorted by the predictions made by the linear (L-En) and
nonlinear ensemble (N-En) methods for different sample splits capturing economic states. We split the
sample by the median VIX from 2003 through 2020, the median EPU index by Baker, Bloom, and Davis
(2016), by the sign of the Chicago Fed National Activity Index, the median of the St. Louis Fed Stress
Index, and the median of the sentiment index proposed by Baker and Wurgler (2006). Pred denotes
the average predicted return within the respective portfolio, Avg the average realized return, SD the
standard deviation of realized returns and finally SR the realized Sharpe ratio. All values are given per
month. The last column (N vs. L) gives the significance of comparing the mean realized returns for
N-En and L-En. ***, **, * correspond to N-En beating L-En significantly at the 1%, 5%, 10% level,
respectively.
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IA7.4. Profitability of Machine Learning Portfolios Per Bucket

L-En N-En

TTM Mon. Type Pred Avg SD SR Pred Avg SD SR N vs. L

τ ≤ 90

atm 1.761 1.556 0.831 1.874 2.207 1.942 0.805 2.413 ***
itm C 1.960 1.614 1.159 1.393 3.099 2.352 1.226 1.919 ***
itm P 2.284 1.468 0.940 1.562 2.580 2.255 1.354 1.666 ***
otm C 2.055 3.430 2.412 1.422 3.655 4.013 2.611 1.537 **
otm P 1.708 2.967 2.453 1.210 3.282 4.121 2.783 1.481 ***

τ > 90

atm 1.705 1.367 0.983 1.390 1.927 1.950 0.995 1.959 ***
itm C 1.744 1.856 1.218 1.524 2.385 2.804 1.443 1.943 ***
itm P 2.085 0.918 0.890 1.030 2.036 1.391 0.992 1.402 ***
otm C 1.897 2.554 1.947 1.312 2.798 3.468 1.996 1.737 ***
otm P 1.649 1.951 1.574 1.239 2.405 2.660 1.779 1.495 ***

Table IA7.3: Trading on Machine Learning Predictions – Buckets

The table shows the returns to option portfolios sorted by the predictions made by the linear (L-En) and
nonlinear ensemble (N-En) methods for the option buckets defined in Section 4 We show the returns to
the resulting high-minus-low portfolios. Pred denotes the average predicted return within the respective
portfolio, Avg the average realized return, SD the standard deviation of realized returns and finally SR
the realized Sharpe ratio. The last column (N vs. L) gives the significance of comparing the mean
realized returns for N-En and L-En. ***, **, * correspond to N-En beating L-En significantly at the 1%,
5%, 10% level, respectively.
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IA7.5. Impact of Spreads on Profitability (N-En) – Option Buckets
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Fig. IA7.8. Rolling One-year Returns and Effective Spreads

The figure shows rolling cumulative returns over 252 trading days for the high-minus-low portfolio fol-
lowing the predictions made by N-En for the different option buckets defined in Section 4. We compare
the resulting profitability for zero effective spreads (trading at the mid price), as well as effective spreads
of 15% and 25%.
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Fig. IA7.9. Rolling One-year t-statistics and Effective Spreads

The figure shows rolling Newey and West (1987) t-statistics with a lag of twelve months over 252 trading
days for the high-minus-low portfolios following the predictions made by N-En for the different option
buckets defined in Section 4. We compare the resulting profitability for zero effective spreads (trading
at the mid price), as well as effective spreads of 15% and 25%.
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Appendix IA8. Which Characteristics Matter?
Additional Analyses
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Fig. IA8.1. Feature Group Importance for N-En Over Time

The figure shows the time evolution of ranking the twelve feature groups defined in Appendix IA4 by
their importance for the nonlinear ensemble (N-En). 1 denotes the lowest-ranking feature group, 12 the
highest-ranking. The average rank of each group is provided in parentheses. We measure the importance
using SHAP values following Lundberg and Lee (2017). The group importance is the sum of the resulting
SHAP values for all features included in a given group. The values are scaled such that they sum to
one. The bars represent the mean feature group importance for the entire testing sample, the dots
the dispersion of the group importance for the months in the testing sample. The abbreviations used:
Acc=Accruals, Prof=Profitability, Q=Quality, Inv=Investment, Ill=Illiquidity, Info=Informed Trading,
Val=Value, C=Contract, Past=Past Prices, Fric=Frictions, Ind=Industry.
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Appendix IA9. Impact of the Information Set
Additional Analyses
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Fig. IA9.1. Restricting the Information Set for N-En – R2
OS;XS

The figure shows the cross-sectional out-of-sample R2
OS;XS defined in Equation (5) for N-En with re-

stricted access to the full set of characteristics. The full model is shown in the left bar for reference,
and is compared with models using all option-based information (O), models using only bucket- and
contract-based information (B+C) and models using only stock-based information (S). The distinction
of the information source is provided in Appendix IA4. ***, **, * below the bars denotes statistical
significance at the 0.1%, 1% and 5% level as defined in Equation (7) for the sample of “all” options. The
testing sample spans the years 2003 through 2020.
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Appendix IA10. Sources of Option Return
Predictability
Additional Analyses

IA10.1. Presence of Informed Investors
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Fig. IA10.1. Predictability and Profitability Conditional on Informed Investor Presence
– R2

OS;XS

The left panel of the figure shows cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) using

the nonlinear ensemble N-En for different quintiles of institutional ownership and analyst coverage of the
underlying stocks. ***, **, * above the bars denotes statistical significance at the 0.1%, 1% and 5%-level
as defined in Equation (7). The right panel shows the resulting Sharpe ratios of buying options in the
highest predicted return decile and selling options in the lowest for each subsample.
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IA10.2. Option Demand
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Fig. IA10.2. Predictability Conditional on Option Demand – R2
OS;XS

The figure shows the cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) using the nonlinear

ensemble N-En conditional on the net open interest of retail and institutional investors, I. We indepen-
dently form terciles based on the cross-sectional distribution of IR and II . ***, **, * denotes statistical
significance at the 0.1%, 1% and 5%-level as defined in Equation (7).
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IA10.3. Stock Illiquidity
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Fig. IA10.3. Predictability and Profitability Conditional on Stock Illiquidity – R2
OS;XS

The left panel of the figure shows cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) using

the nonlinear ensemble N-En for different quintiles of the underlying stock’s illiquidity measured by the
relative bid ask spread, baspread = ask−bid

mid . ***, **, * above the bars denotes statistical significance
at the 0.1%, 1% and 5%-level as defined in Equation (7). The right panel shows the resulting Sharpe
ratios of buying options in the highest predicted return decile and selling options in the lowest for each
subsample.
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IA10.4. Option Illiquidity
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Fig. IA10.4. Predictability and Profitability Conditional on Option Illiquidity – R2
OS

The left panel of the figure shows out-of-sample R2
OS as defined in Equation (4) using the nonlinear

ensemble N-En for different quintiles of the options’ illiquidity measured by the relative bid ask spread,
optspread = ask−bid

mid . ***, **, * above the bars denotes statistical significance at the 0.1%, 1% and
5%-level as defined in Equation (7).

Low Pred. 2 3 4 High Pred. H-L

Option Illiquidity

Low - 0.977*** - 0.228 - 0.056 0.085 0.445** 1.422***
2 - 1.130*** - 0.258** - 0.064 0.096 0.554*** 1.684***
3 - 1.333*** - 0.313** - 0.074 0.086 0.587*** 1.920***
4 - 1.620*** - 0.386*** - 0.099 0.136 0.710*** 2.330***
High - 2.061*** - 0.535*** - 0.109 0.173 0.817*** 2.878***
H-L - 1.084*** - 0.307*** - 0.053 0.088 0.372*** 1.457***

Table IA10.1: Bivariate Portfolios of Option Illiquidity and Expected Returns

The table shows realized returns for quintiles portfolios following the predictions by the nonlinear en-
semble N-En within quintiles sorted by options’ illiquidity measured by the relative bid ask spread,
optspread = ask−bid

mid . ***, **, * denotes statistical significance at the 1%, 5% and 10%-level as defined
in Equation (7). We also show the realized returns and significance for the resulting high-minus-low
portfolios.
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Fig. IA10.5. Predictability and Profitability Conditional on Option Illiquidity – R2
OS;XS

The left panel of the figure shows cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) using

the nonlinear ensemble N-En for different quintiles of the options’ illiquidity measured by the relative bid
ask spread, optspread = ask−bid

mid . ***, **, * above the bars denotes statistical significance at the 0.1%,
1% and 5%-level as defined in Equation (7). The right panel shows the resulting Sharpe ratios of buying
options in the highest predicted return decile and selling options in the lowest for each subsample.
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IA10.5. Option Mispricing
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Fig. IA10.6. Predictability and Profitability Conditional on Option Mispricing – R2
OS;XS

The left panel of the figure shows cross-sectional out-of-sample R2
OS;XS as defined in Equation (5) using

the nonlinear ensemble N-En for different quintiles of option mispricing. We calculate option mispricing
using the stocks’ realized volatility over the last quarter and calculate “fair prices” for short-term at-
the-money options using it as input to the Black and Scholes (1973) model. Mispricing is then defined

as log(O/Õ), where Õ denotes the obtained “fair price”. ***, **, * above the bars denotes statistical
significance at the 0.1%, 1% and 5%-level as defined in Equation (7).
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Pástor, L., Stambaugh, R. F., 2003. Liquidity risk and expected stock returns. Journal

of Political Economy 111, 642–685.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,

Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019.

Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H.,
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