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1. Introduction

The rapid expansion of the options market, marked by explosive growth in contract vol-

umes, underscores its thriving role in the financial landscape: According to the Option

Clearing Corporation, the average daily trading volume in the U.S. options market soared to

44.2 million contracts in 2023, a staggering increase from just 11.4 million contracts in 2007.

This surge in market activity has been paralleled by a growing academic interest in under-

standing the characteristics explaining the cross-section of individual equity option returns.

Consequently, these trends have led to the discovery of a vast set of option return anomalies,

a phenomenon previously coined as the “factor zoo” in the stock universe (Cochrane, 2011).

While the focus of previous academic research has been on identifying return anomalies,

less emphasis has been placed on utilizing a combination of these anomalies as a multi-factor

model to price options. Exceptions include (a) Horenstein, Vasquez, & Xiao (2022) who

propose a latent three-factor structure captured by an option market factor, a factor based

on the difference between implied and realized volatility, and a factor based on the volatility

of implied volatility, (b) Zhan, Han, Cao, & Tong (2022) who price nine out of ten option

return anomalies using a two-factor model that includes factors constructed by sorting on

underlying stock liquidity and idiosyncratic volatility, and (c) Tian & Wu (2023) who suggest

a five-factor model in which they add option momentum and the difference between implied

and realized volatility to three factors that capture the risks and costs of market making

(volatility risk, jump risk, and hedging costs). However, such low-dimensional factor models
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may suffer from potentially omitted variable bias and often fail to capture the full spectrum of

influencing factors, leading to incomplete estimations of option returns and leftover abnormal

returns. Moreover, not only are the competing models relatively recent, but they are also

quite different from one another, indicating that no proposed model has established itself as

the dominant yet.

In response to these shortcomings of low-dimensional factor models for individual equity

option returns, our study utilizes the Bayesian model averaging (BMA) approach, introduced

by Bryzgalova, Huang, & Julliard (2023), to estimate a SDF from a large cross-section of

potentially relevant traded and non-traded factors. This approach is especially useful as it

handles traditional weak points of the generalized method of moments (GMM), namely the

presence of weak and level factors, while efficiently selecting true pricing sources. For our

empirical analysis, we assemble a broad collection of factors to price the cross-section of

call and put options, including 30 traded option factors (including the discovered anomalies

from previous option research), 15 non-traded factors, as well as six widely used stock market

factors. Our sample period is from 1996 to 2021. To construct the factors and test assets,

we use monthly delta-hedged returns from the OptionMetrics database with a daily hedg-

ing schedule to refrain from options’ sensitivities to the price movements of the respective

underlying.

We identify several key option factors with high posterior probabilities of being included

in the SDF that prices both the traded factor set and 25 long portfolios constructed by inde-

pendently sorting on options’ open-dollar interest and the implied minus realized volatility
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spread. For both calls and puts, the BMA-SDF selects (i) the difference between implied and

realized volatility, (ii) option return momentum, and (iii) jump risk as the most important

characteristics for all imposed levels of shrinkage. Nevertheless, we also provide evidence that

the true SDF is dense rather than sparse. First, the average model dimension is large for the

models chosen by the BMA approach. Second, no dominant model arises. Rather, there are

many models with similar posterior probabilities. Third, when compared with traditional

factor models, the BMA approach by Bryzgalova, Huang, & Julliard (2023) demonstrates

superior pricing performance, even though some benchmark models share the most-likely to

be included factors (i) to (iii), providing evidence that other factors exhibit relevant pricing

information too.

Our results are consistent in both in-sample and out-of-sample tests across different cross-

sections of assets and time periods. For the cross-sectional out-of-sample performance, we

assess the different models’ capability of pricing 17 industry-sorted option portfolios and

26 additional option return anomalies as identified by Goyal & Saretto (2024) that are not

featured in stand-alone academic papers. For the out-of-sample tests in the time-series di-

mension, we estimate the BMA-SDF over the first (second) half of our sample period and

then evaluate its pricing performance over the second (first) half. In the context of this

analysis, we observe that the composition of factors with the highest posterior model proba-

bilities changes over time: Whereas general mispricing, as captured by the difference between

implied and realized volatility, is by far the most dominant factor in the first subperiod, more

risk-related option factors such as jump risk gain in importance during the second subperiod.

In addition, we introduce new “best factor” models, created by selecting factors with the
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highest posterior probabilities.1

Detzel, Novy-Marx, & Velikov (2023) show that failing to adjust asset pricing models for

transaction costs obscures the distinction between true risk premia and unattainable paper

profits, with estimated SDFs and optimal portfolios falsely concentrating on the latter. This

might be especially relevant for options markets as transaction costs are particularly high

compared to other asset classes (e.g., Muravyev & Pearson, 2020; Goyal & Saretto, 2024).

To address this issue, we calculate factor and test asset returns net of transaction costs and

repeat our main analysis. Factors based on option momentum and the difference between

implied and realized volatility capture genuine risk premia beyond just limits to arbitrage,

while the jump risk factor vanishes as a likely candidate of the true SDF due to trading on

options with high trading costs. The pricing performance of the BMA-SDF remains superior

over low-dimensional benchmark models when accounting for transaction costs.

Bryzgalova, Pavlova, & Sikorskaya (2023) document a rising share of retail traders for

equity options over the last years. To assess whether a higher concentration of retail trading

in certain options contracts influences the composition of the SDF that prices these options,

we use signed volume data from four NASDAQ options exchanges to identify options with

high and low small customer volumes. After constructing our option factors and test assets

with above- and below-median retail volume, we repeat our analysis and find that the spread

between implied-minus-realized volatility, a measure related to general option mispricing, and

the log price of the underlying, a characteristics related to investor inattention (Boulatov

1The superior out-of-sample pricing performance of even the factor model with only four factors under-
scores the BMA approach’s utility in factor selection. However, the further improvements in the pricing
power of the best ten-factor model show that there are limitations in the model reduction because of the
dense nature of the true SDF.
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et al., 2022), are more pronounced in the high-retail investor subsample. This finding is

consistent with the notion that option prices are affected by behavioral biases to which less

sophisticated investors are more susceptible.

Related literature

First and foremost, our paper relates to Bryzgalova, Huang, & Julliard (2023), who in-

troduce a Bayesian method for model estimation, selection, and averaging for traded and

non-traded factors, allowing for the presence of both weak and strong factors. The crucial

result of the authors’ empirical analysis is that a dense space of factors characterizes the SDF

for stock returns. Hence, the introduction of a BMA-SDF serves as the optimal approach to

aggregate factors and thereby spans the “true” SDF of equity returns characterized by a mul-

titude of factors proxying for similar risks. Dickerson, Julliard, & Mueller (2023) implement

the Bayesian method introduced by Bryzgalova, Huang, & Julliard (2023) to price corporate

bond returns using a joint sample of bond and equity factors. Similar to the SDF for stock

returns, they document a dense factor structure of the SDF that prices bond returns. To

our knowledge, we are the first to apply Bayesian methods in the context of assessing linear

factor models for individual equity options. In line with the findings for stocks and bonds, we

document a dense factor structure of the SDF in the options market and a superior pricing

performance by the BMA-SDF compared to reduced-form benchmark models.

Turning to the literature on option returns, our paper contributes to previous work that

analyses characteristics explaining option returns in the cross-section. Up to now, the ex-

isting literature has established two sets of characteristics with explanatory power for the
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cross-section of option returns. First, characteristics related to market makers’ hedging

capabilities and incurred risks drive option returns as these liquidity providers require com-

pensation for higher incurred hedging costs. For instance, Cao & Han (2013) document that

options on stocks with high idiosyncratic volatility yield lower returns as option end-users

display high demand for these options, and option dealers as counterparties in the transac-

tions must more frequently adjust their delta-hedge positions for the options on stocks with

high idiosyncratic volatility. Tian & Wu (2023) highlight the relevance of primary risks for

option market makers, namely delta-hedging costs, volatility risk, and jump risk, to explain

option returns.2 Second, end-user demand for options with specific characteristics can affect

option prices and, therefore, results in cross-sectional return predictability. For instance,

Frazzini & Pedersen (2022) argue that investors are willing to pay a premium for options

with higher embedded leverage and show that these contracts consequently display lower

returns. In addition, several studies point out behavioral aspects that impact options prices.

Byun & Kim (2016) stress the importance of investors’ gambling preferences leading to an

overvaluation of options on lottery-like stocks. Boulatov et al. (2022) demonstrate that due

to limited investor attention, options on low-priced stocks are overpriced as investors incor-

rectly consider them bargains.3 We relate to this strand of literature by documenting that

2Also, other general costs to market-making drive option prices: Christoffersen et al. (2018) find a positive
liquidity premium for single-name options with high spreads to compensate market makers that are, on
average, long in these contracts.

3Other option and underlying stock characteristics with pricing power are less clearly assignable to one
of the two categories outlined above. For example, Goyal & Saretto (2009) hypothesize that the difference
between implied and historically realized volatility is related to investor overreaction, however, this character-
istic might also proxy for a volatility risk premium and, importantly, any (residual) option mispricing (Tian
& Wu, 2023). Zhan et al. (2022) find a multitude of profitable option strategies by sorting on stock-level
characteristics and cannot identify an unambiguous explanation for these return anomalies. Furthermore,
Heston, Jones, Khorram, Li, & Mo (2023) do not find a clear risk- or behavioral-based explanation for the
momentum effects in option returns. In this context, Käfer, Moerke, & Wiest (2023) show that single option
momentum stems from option factor momentum, indicating that persistent factor risk premia, as well as
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pricing factors linked to behavioral biases and mispricing gain in importance for explaining

the returns of options with high retail volume.

Finally, recent work such as Horenstein et al. (2022) or Tian & Wu (2023) attempt to

explain the predictability of option returns in the cross-section by introducing linear factor

models for the options market. Goyal & Saretto (2024) can explain the returns of 46 option

trading strategies using an IPCA (instrumented principal component analysis) model. Our

paper contributes to the existing option factor models by identifying option factors that

are most likely to be part of the SDF using Bayesian methods. We show that the factors

identified by the Bayesian method outperform existing reduced-form benchmark models in

out-of-sample tests. However, we also find that the BMA approach outperforms any reduced-

form factor model, in line with our finding that the factor space in the options market is

dense.

The remainder of this paper is organized as follows. Section 2 provides a brief overview

of the Bayesian methods applied in our empirical analyses. Section 3 summarizes our data

collection, option return definition, and option factor construction. Section 4 presents our

main empirical results and Section 5 includes additional analyses on the impact of transaction

costs and retail trading as well as robustness checks. Section 6 concludes.

persistent variation across the factor premia, drive option momentum.
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2. Methodology

We adapt the methodology of Bryzgalova, Huang, & Julliard (2023) and Dickerson et

al. (2023) to provide a Bayesian analysis of linear stochastic discount factor models in the

single-name equity options market. In this section, we shortly summarize the methodology.

For a detailed treatment, we refer the reader to Bryzgalova, Huang, & Julliard (2023) and

Dickerson et al. (2023).

We begin by considering a linear factor model for the stochastic discount factor (SDF). In

general, let E[X] ≡ µX be the unconditional expectation of the random variable X. Further-

more, let 1N (0N) denote a N -dimensional vector of ones (zeros) and Rt = (R1,t, . . . , RN,t)
T ∈

RN represent the time-t returns of N test assets. Next, we consider a set of K tradable

(f
(1)
t ∈ RK1) and non-tradable factors (f

(2)
t ∈ RK2), where K = K1 + K2. A linear SDF

has the form Mt = 1 − (ft − E[ft])Tλf , where λf ∈ RK is the vector of market prices of

risk for the factors. Under no-arbitrage, MtRt = 0N , and expected returns are expressed

as µR = E[Rt] = Cfλf with Cf being the covariance matrix between Rt and ft. Define

C = (1N , Cf ), λ
T = (λc, λ

T
f ) with λc being average mispricing, and α ∈ RN being a vector of

pricing errors in excess of λc. Then, market prices of risk, λf , can be estimated by running

the following cross-sectional regression

µR = λc1N + Cfλf + α = Cλ+ α. (1)

We follow Bryzgalova, Huang, & Julliard (2023) and Dickerson et al. (2023) and specify prior
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and posterior probabilities for factors, returns, and the average pricing error. Specifically,

the time-series of the union of factors and returns, Yt = f
(2)
t ∪Rt, Yt ∈ Rp+K2 , is multivariate

Gaussian with mean µY and variance matrix ΣY . By utilizing the usual diffusive prior for

the time-series parameters (µY ,ΣY ) as π(µY ,ΣY ) ∝ |ΣY | yields Normal-inverse Wishart

posteriors. Assuming that average pricing errors α are following a Normal distribution with

mean-zero and variance matrix σ2ΣR, the cross-sectional likelihood is given as

p(data|λ, σ2) = (2πσ2)−
N
2 |ΣR|−

1
2 exp

(
− 1

2σ2
(µr − Cλ)Tσ−1

R (µR − Cλ)

)
, (2)

where the expected risk premia, µR, and the factor loadings, C = (1N , Cf ) constitute “data”

in Equation (2). As the goal is to arrive at a posterior distribution for different models

for the SDF, Bryzgalova, Huang, & Julliard (2023) and Dickerson et al. (2023) specify the

following prior for the risk prices. Let γT = (γ0, . . . , γK), γj ∈ {0, 1}∀j = 1, . . . , K be a

vector of binary variables for denoting a selection of factors for the SDF, i.e., γj = 1 if the

j-th factor is included in the SDF, otherwise γj = 0. Bryzgalova, Huang, & Julliard (2023)

propose to use a continuous spike-and-slab mixture prior instead of flat priors, π(λ, σ2, γ, ω).

They motivate this choice by the possible presence of weak factors which can render the

definition of posterior probabilities undefinable for flat priors. π(λ, σ2, γ, ω) is given as

π(λ, σ2, γ, ω) = π(λ|σ2, γ)× π(σ2)× π(γ|ω)× π(ω),

λj|γj, σ2 ∼ N (0, r(γj)ψjσ
2),

(3)

where r(γj) introduces the spike-and-slab prior. If the j-th factor should be included in
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the SDF, r(γj = 1) = 1, and the prior distribution for λj is diffuse with mean zero. On

the other hand, if the j-th factor should not be included in the SDF, r(γj = 0) = r ≪ 1,

and the prior is concentrated at zero. ψj in Equation (3) penalizes factors that are likely

caused by identification failure and is determined data-driven as ψj = ψ × ρ̃Tj ρ̃j with ρ̃j =

ρj− 1
N

∑N
i=1 ρi,j×1N , where ρj ∈ RN is a vector of correlation coefficients between factor j and

the test assets, and ψ ∈ R+ is a tuning parameter controlling the degree of shrinkage across

all factors. ψ has an economic interpretation as it is linked to the expected prior Sharpe ratio

(SR) which can be achieved with all factors. It holds that Eπ(SR
2
f |σ2) = 1

2
ψσ2

∑K
k=1 ρ̃

T
k ρ̃k

for r → 0. π(ω) in Equation (3) serves two purposes. It yields a way to sample across

the space of all potential models and it incorporates the prior on the sparsity of the true

model. Bryzgalova, Huang, & Julliard (2023) and Dickerson et al. (2023) follow the previous

literature and use

π(γj = 1|ωj) = ωj, ωj ∼ Beta(aω, bω), (4)

where aω and bω denote hyperparameters of the Beta distribution. This system yields well-

defined posterior conditional distributions for all model parameters, which can be used to

perform Gibbs sampling.4 Averaging over sampled models and risk prices then yields the

most likely SDF given the data (Bryzgalova, Huang, & Julliard, 2023).

We utilize Gibbs sampling to compute posterior means and intervals for all unknown pa-

rameters and quantities of interest. We focus on the GLS formulations when performing

the Bayesian estimations, let the Markov chain run for 500,000 steps in each setting and

4For the sake of brevity, we refer to Appendix A of Dickerson et al. (2023) for the system of conditional
distributions and a detailed guide for the applied Gibbs sampling.
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calculate results after dropping the first 50,000 steps. Further, non-informative prior beliefs

are employed about factor inclusion, drawing factor inclusion probabilities from a Beta(1, 1)

distribution, i.e., setting aω = bω = 1 in Equation (4). This results in ex-ante model proba-

bilities of 1
2

51 ∼ 4.44× 10−16. Further, we show our results for multiple levels of shrinkage ψ.

We induce these levels by initiating the BMA-SDF estimation for different prior annualized

Sharpe ratios ranging from 10% to 90% of the ex-post maximum Sharpe ratio achievable

with the set of in-sample test assets.

3. Data

Our main data set for option prices and characteristics is the OptionMetrics Ivy database

which hosts historical option prices for U.S. single-name equity options. We obtain option

data from OptionMetrics for the period from January 1996 to December 2021. Historical

prices, returns, and characteristics of the underlying stocks are sourced from Jensen, Kelly,

& Pedersen (2023), a publicly available dataset.5 We retain only underlyings that are com-

mon stocks trading at the NYSE, AMEX, and NASDAQ stock exchanges. Additionally,

we exclude stock-month observations if the underlying stock’s price is below USD 5. The

underlying stock price data is from CRSP. We match CRSP with OpionMetrics using the

linking algorithm provided by WRDS. We take daily risk-free rates from Kenneth French’s

online data library.6 Monthly risk-free rates are taken from OptionMetrics.

5The data, replication code, and documentation can be found at https://github.com/bkelly-lab/

ReplicationCrisis/tree/master/GlobalFactors.
6https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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We focus on at-the-money options with less than two months to expiration as most of the

academic literature studies these contracts due to their high trading volume (see, e.g., Zhan

et al., 2022; Vasquez & Xiao, 2023). For each underlying in each month, we select a single call

option and a single put option that are closest to at-the-money and that have the shortest

maturity among options with more than one month until expiration. Furthermore, we require

that the strike-to-spot ratio, K/S, is between 0.8 and 1.2. We restrict our sample to options

with a standard expiration on the third Friday of a month. As it is common practice in

the literature (see, e.g., Zhan et al., 2022; Bali, Beckmeyer, Moerke, & Weigert, 2023), we

apply several filters to construct our option sample.7 First, we discard options without an

implied volatility estimate in the OptionMetrics database. Second, we exclude options on

stocks with a dividend payment throughout the month-end to month-end investment period.

Third, we drop options for which the bid price is zero, the ask is smaller or equal to the bid,

the mid price is below USD 0.125, or the proportional bid-ask-spread is above 50%. Fourth,

we exclude observations that violate American option bounds. Fifth, we disregard options

with zero open interest over the previous week. Sixth, as most options at the end of each

month have the same maturity, we discard observations with different expiration dates from

the majority of all other options selected on that day. Finally, we keep only stocks in the

sample that have at least one call and one put option available after filtering.

7To avoid any forward-looking bias (Duarte, Jones, Mo, & Khorram, 2023), we follow Bali et al. (2023)
and apply filters only at position initiation.
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3.1. Option returns

Our primary units of analysis are monthly delta-hedged option returns. To calculate delta-

hedged returns, we first compute delta-hedged option gains following Bakshi & Kapadia

(2003). Let T = {t = t0 < · · · < tN = t + τ} denote the partition of the interval from t to

t + τ . The delta-hedged option gain is the value of a self-financing portfolio consisting of a

long option contract, hedged by a position in the underlying stock such that the sensitivity

of the entire option and stock portfolio with respect to changes in the underlying stock price

is locally zero. Following Bali et al. (2023), we choose a daily delta-hedging schedule. Tian

& Wu (2023) document that delta-hedging at position initiation removes approximately 70%

of the directional risks embedded in the option position, whereas daily delta-hedging yields

a reduction of 90%. We model long option positions which are hedged discretely N times at

each of the dates tn, n = 0, . . . , N − 1. Therefore, the discrete delta-hedged option gain over

the period [t, t+ τ ] is given by

Π(t, t+ τ) = Ot+τ −Ot −
N−1∑
n=0

∆O,tn [S(tn+1)− S(tn)]

−
N−1∑
n=0

anrn
365

[O(tn)−∆O,tnS(tn)] ,

(5)

where Ot denotes the option’s mid price at time t, rn is the risk-free rate at tn, an is the

number of calendar days between rehedging dates tn and tn+1 and is set equal to 1, and ∆O,tn

is the observed delta of the option provided by OptionMetrics. Following Cao & Han (2013),

we consider gains over an investment horizon of one calendar month to compute month-end
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Table 1: Summary statistics of option data.
This table reports summary statistics of our final sample of monthly option data used to construct option
factors. The sample is from February 1996 to December 2021. Panel A describes the sample of call options,
and Panel B the sample of put options. Daily delta-hedged option returns are the monthly returns of delta-
hedged positions. The hedges are adjusted daily to be immune to changes in the underlying. Details are
outlined in section 3.1. Open interest is the option contract’s open interest at the beginning of the month.
Delta is the option’s delta as provided by OptionMetrics. Moneyness is the ratio of the option’s strike price
(K) over the underlying stock price (S). Time to maturity is the days until the option’s expiration. Market
capitalization is the underlying stock’s total market capitalization at the beginning of the month.

Variable Mean SD 10th pct. Median 90th pct.

Panel A: Calls
Option return (daily delta-hedged, in %) -0.19 4.56 -4.59 -0.55 4.49
Dollar open interest 1809.81 9176.69 8.55 155 3329.22
Delta 0.54 0.12 0.39 0.54 0.68
Moneyness (K/S) 1 0.05 0.94 1 1.06
Time to maturity (in days) 49.7 2.07 46 50 52
Market capitalization 9.46 37.91 0.34 1.86 17.89

Panel B: Puts
Option return (daily delta-hedged, in %) -0.25 3.84 -4.04 -0.61 3.78
Dollar open interest 1280.71 6605.86 7.12 106.25 2289.86
Delta -0.46 0.12 -0.61 -0.45 -0.31
Moneyness (K/S) 1 0.05 0.94 1 1.06
Time to maturity (in days) 49.69 2.06 46 50 52
Market capitalization 10.47 40.19 0.38 2.11 20.35

to month-end option returns as

rt,t+τ =
Π(t, t+ τ)

|∆tSt −Ot|
, (6)

by dividing the delta-hedged gain, Π(t, t+τ), by the absolute value of the securities involved.

Each month, we winsorize the delta-hedged option returns at the 1%-level in both tails to

mitigate the impact of erroneous data.

Table 1 provides descriptive statistics of our option return sample for a total of 383,733

call and 339,660 put observations. On average, the monthly option returns with daily delta-

hedging schedule are negative with –0.19% for calls and –0.25% for puts, which is in line
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with a negative volatility risk premium inherent in delta-hedged option positions (Bakshi &

Kapadia, 2003). Due to the data selection outlined above, we observe that, on average, the

maturity of the option is close to 50 days with a standard deviation of 2 days. Moreover,

the average strike-to-spot ratio is 1 with a standard deviation of 0.05, and absolute deltas

are close to 0.5.

3.2. Factors

We construct option factors by sorting month t delta-hedged option returns into equal-

weighted decile portfolios based on contract-level or stock-level characteristics from month

t-1 (sorted from the smallest value to the highest value of the respective characteristic). The

option factor returns are given by the 10− 1 portfolio return in month t.

3.2.1. Traded factors

As traded factors for the in-sample estimation of BMA posterior probabilities and risk

prices, we resort to prominent factors published in the academic literature which have been

shown to have explanatory power for the cross-section of (delta-hedged) option returns. Our

tradable factor set entails 29 long-minus-short factors constructed with sorts on character-

istics such as the difference between implied and realized volatility (ivrv; Goyal & Saretto,

2009), idiosyncratic volatility of the underlying stock returns (ivol; Cao & Han, 2013), or

the average of the ten highest stock returns over the previous quarter (max10; Byun & Kim,

2016). Because we also construct an option momentum factor (omom) in the spirit of Heston
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et al. (2023) and Käfer et al. (2023) by sorting on previous option returns from month t− 2

to t − 12, the final sample period of our factor sample is from February 1997 to December

2021. Finally, we augment the list of factors by a proxy for the single-name option market

return, which we construct following Horenstein et al. (2022). To do so, we use the decile

portfolios for each of the 29 characteristics and compute an equal-weighted return across

these 290 decile portfolios. Internet Appendix IA1.1.1 describes the characteristics used to

construct option factors in detail. In addition, Table 2 provides an overview of all tradable

factors as well as their monthly mean returns. In line with the option factor literature,

most high-minus-low option factors (23 call and 28 put factors out of 30) yield statistically

significant mean returns.

Next to option factors, we also consider factors that are based on stock returns. The

addition of stock factors is motivated by Dickerson et al. (2023) who assess the joint pricing

power of bond and equity factors for corporate bonds using Bayesian model averaging.

Moreover, several previous studies in the empirical option return literature use prominent

equity factors to explain option return anomalies (e.g., Zhan et al., 2022; Boulatov et al.,

2022). For our analyses, we focus on the most widely established equity factors, namely the

stock market excess return (Mkt-Rf; Sharpe, 1964; Lintner, 1965), the size and value factors

(SMB and HML; Fama & French, 1992), the profitability and investment factors (RMW and CMA;

Fama & French, 2015), and the stock momentum factor (Mom; Carhart, 1997). The returns

of these stock factors are taken from Kenneth French’s online data library.
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Table 2: Overview of factor set (traded option factors).
This table lists the 30 option factors used in our tradeable factor set with the original paper that proposed
the factor or documented the characteristics’ explanatory power for the cross-section of option returns. On
the right hand, we report monthly means of factor returns for factors constructed using delta-hedged call or
put returns. t-stats of mean returns account for heteroskedasticity and autocorrelation in residuals up to lag
four, following Newey & West (1987). The sample period is from February 1997 to December 2021. Detailed
descriptions of the characteristics used for factor construction are documented in Internet Appendix IA1.1.1.

Monthly mean returns in % (t-stat)

Factor Reference paper Calls Puts

Embedded leverage (embedlev) Frazzini & Pedersen (2022) 0.45 (7.98) 0.52 (9.92)

Delta-hedging costs (hc) Tian & Wu (2023) -0.87 (-7.08) -0.82 (-9.83)

Volatility risk (vr) Tian & Wu (2023) -1.06 (-9.00) -0.98 (-11.99)
Historical jump risk (jr) Tian & Wu (2023) -0.83 (-12.82) -0.66 (-14.31)

Volatility of implied volatility (vov) Ruan (2020) -0.39 (-5.25) -0.38 (-6.72)

Option illiquidity (optspread) Christoffersen et al. (2018) 0.001 (0.018) 0.07 (1.16)

Option momentum (omom)
Heston et al. (2023);

Käfer et al. (2023)
1.16 (11.83) 1.00 (13.56)

Historical stock volatility (hvol) Hu & Jacobs (2020) -0.70 (-4.70) -0.77 (-6.76)
Systematic volatility (sysvol) Aretz, Lin, & Poon (2023) -0.08 (-0.55) -0.13 (-1.19)

Impl. volatility term structure (ivterm) Aretz et al. (2023) -0.91 (-7.88) -0.78 (-9.11)
Stock return autocorrelation (ac) Jeon, Kan, & Li (2019) 0.022 (0.39) -0.11 (-2.52)

Average of 10 highest past returns (max10) Bali, Cakici, & Whitelaw (2011) -0.58 (-3.88) -0.67 (-5.74)

Default risk (defrisk) Vasquez & Xiao (2023) -0.22 (-1.54) -0.32 (-3.25)
Idiosyncratic skewness (iskew) Byun & Kim (2016) -0.06 (-1.18) -0.13 (-2.78)

Total skewness (tskew) Byun & Kim (2016) -0.11 (-1.61) -0.18 (-3.54)

Idiosyncratic volatility (ivol) Cao & Han (2013) -0.84 (-6.58) -0.90 (-9.02)
Implied minus realized volatility (ivrv) Goyal & Saretto (2009) -2.34 (-10.76) -1.84 (-11.82)

Stock illiquidity (amihud)
Kanne et al. (2023);

Zhan et al. (2022)
-0.58 (-4.76) -0.58 (-7.02)

Short interest (rsi) Ramachandran & Tayal (2021) -0.21 (-2.96) -0.53 (-9.54)

1-year new stock issues (issue 1y) Zhan et al. (2022) -0.43 (-4.35) -0.39 (-4.49)

5-year new stock issues (issue 5y) Zhan et al. (2022) -0.58 (-5.95) -0.47 (-6.59)

Analyst dispersion (disp) Zhan et al. (2022) -0.35 (-4.64) -0.33 (-6.11)

Altman Z-score (zscore) Zhan et al. (2022) 0.23 (2.44) 0.18 (2.54)
Cash-to-assets ratio (cash at) Zhan et al. (2022) -0.86 (-7.87) -0.70 (-8.12)

Cash flow volatility (ocfq saleq std) Zhan et al. (2022) -0.91 (-10.21) -0.76 (-11.88)

Operating profits to book equity (ope be) Zhan et al. (2022) 0.84 (8.59) 0.75 (10.37)
Profit margin (ebit sale) Zhan et al. (2022) 0.94 (9.39) 0.83 (11.66)

Net total issuance (netis at) Zhan et al. (2022) -0.53 (-4.84) -0.50 (-6.26)

Stock price (log price)
Zhan et al. (2022);
Boulatov et al. (2022)

1.02 (7.26) 0.80 (8.01)

Option market factor (ew ret) Horenstein et al. (2022) -0.16 (-1.31) -0.24 (-2.36)

3.2.2. Non-traded factors

We supplement the tradeable factors described in the previous subsection with 15 non-

traded factors. First, we use ten of the non-traded factors in Bryzgalova, Huang, & Julliard

(2023) and Dickerson et al. (2023) that might span the risks affecting option prices, such as
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the economic uncertainty risk (Jurado, Ludvigson, & Ng, 2015) or aggregate volatility risk as

captured by first differences in the CBOE VIX index (Ang, Hodrick, Xing, & Zhang, 2006).

Second, we supplement these factors with five additional non-traded factors that proxy for

risks relevant for explaining returns in the options market. For instance, we use payoffs of

S&P 500 correlation swaps to proxy for correlation risk as Driessen, Maenhout, & Vilkov

(2009) show that correlation risk exposure can explain the cross-section of single-name option

returns. Further details on the definition of the non-traded factors are reportet in Internet

Appendix IA1.2.

3.3. Test assets

We require a set of in-sample and out-of-sample test assets to implement the BMAmethod-

ology outlined in Section 2. The BMA approach uses the in-sample test assets to determine

posterior factor inclusion probabilities and posterior mean factor risk premia. These risk

prices then serve as input for cross-sectional out-of-sample tests in which we evaluate the

pricing performance of the BMA-SDF and other benchmark models which are described in

Internet Appendix IA2.

3.3.1. In-sample test assets

We include the 30 traded option factors described in Section 3.2.1 in our set of in-sample

test assets.8 As stressed by Barillas & Shanken (2017), the inclusion of the traded option

8Note that while stock factors are tradable, we do not include them as test assets, because pricing stock
factors is not a concern of this study. Therefore, the stock factors are treated as non-traded factors and are

part of f
(2)
t ∈ RK2 in the BMA-SDF estimation.
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factors ensures that factors included in a model can also price excluded candidate factors

and themselves (Bryzgalova, Huang, & Julliard, 2023). Crucially, we do not include the

traded stock factors in the set of in-sample test assets as we are not interested in the option

BMA-SDF pricing stock-level risk factors. Furthermore, we include 5 × 5 independently,

double-sorted option portfolios in the spirit of the Fama-French portfolios sorted on size and

the book-to-market ratio. These portfolios are established test assets in the stock pricing

literature. As an analogous option size characteristic, we sort on the option’s outstanding

dollar-open interest in month t − 1. As an option value characteristic, we use implied

minus realized volatility (ivrv) of the option contract in t− 1 as defined in Goyal & Saretto

(2009). ivrv is similar to the book-to-market ratio of stocks because the Black-Scholes (1973)

implied volatility can be interpreted as a measure of market value and realized volatility as

a measure of fundamental option value (Karakaya, 2014). In total, our set of in-sample test

assets consists of 30 long-short and 25 long-only option portfolios.

3.3.2. Out-of-sample test assets

For our set of cross-sectional out-of-sample test assets, we follow Dickerson et al. (2023)

in sorting option returns into monthly long portfolios based on the 17 Fama-French industry

classification (FF17). Sorting option returns by industries results in long portfolios with

sufficient return variation in the cross-section. Moreover, we consider additional long-short

option portfolios that are not included in our set of candidate option factors for the out-

of-sample tests. To do so, we turn to the option and stock-level characteristics in Goyal &

Saretto (2024) that are not sorting characteristics for the traded factors in Section 3.2.1.
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We again construct monthly factors with a decile sort and define factor returns as the high-

minus-low decile return spread. The procedure results in 26 additional return anomalies,

such as factors based on the option contract’s mid price or the underlying stock’s book-to-

market ratio. Details on the definition of the Goyal & Saretto (2024) option anomalies are

in Internet Appendix IA1.4.2. Overall, our set of cross-sectional out-of-sample test assets

consists of 43 option portfolios.

4. Empirical results

We split our baseline analysis into five parts. To answer which factors are most important

to price the cross-section of our test assets, we first highlight the factors for which the BMA

yields the highest posterior factor probabilities. Second, we assess the model probability

and dimensionality of the estimated BMA-SDF. In the third part, we compare the pricing

performance of the BMA-SDF estimations to previously proposed low-dimensional factor

models, both in-sample and out-of-sample for a different cross-section of test assets. Next,

we analyze the out-of-sample performance of a reduced-form linear option factor model that

includes factors based on BMA-implied posterior probabilities. In the fifth part, we assess

the out-of-sample performance for a different time-series of the same test assets used to

estimate the BMA-SDF.
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Fig. 1. Posterior factor inclusion probabilities - Calls

This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined in
Section 2. The factor set includes returns of 30 traded long-short factors based on delta-hedged call returns
as well as 21 non-traded factors from February 1997 to December 2021. Additional test assets are 5× 5 long
portfolios based on independent monthly sorts on ivrv and doi. Portfolio returns are calculated with equal
option weighting. We use non-informative flat priors on factor inclusion probability drawn from a Beta(1, 1)
distribution and different prior annualized Sharpe ratios ranging from 10% to 90% of the ex-post maximum
achievable Sharpe ratio.

4.1. Posterior factor inclusion probabilities and risk prices

We report posterior factor inclusion probabilities, E[γj|data], and posterior prices of risk,

E[λj|data], for each factor j and different prior beliefs about the maximum Sharpe ratio.

Posterior probabilities as a function of prior Sharpe ratios are shown in Figure 1 for factors

based on calls and in Figure 2 for factors based on puts. Tables A1 and A2 present posterior

probabilities and risk prices in tabular form.
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Fig. 2. Posterior factor inclusion probabilities - Puts

This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined in
Section 2. The factor set includes returns of 30 traded long-short factors based on delta-hedged put returns
as well as 21 non-traded factors from February 1997 to December 2021. Additional test assets are 5× 5 long
portfolios based on independent monthly sorts on ivrv and doi. Portfolio returns are calculated with equal
option weighting. We use non-informative flat priors on factor inclusion probability drawn from a Beta(1, 1)
distribution and different prior annualized Sharpe ratios ranging from 10% to 90% of the ex-post maximum
achievable Sharpe ratio.

For delta-hedged calls, even under high levels of shrinkage, three factors stand out by

exhibiting posterior inclusion probability higher than the prior probability of 50% and are

thus likely to be included in the true SDF. These factors are ivrv, omom, and jr. ivrv and jr

show negative posterior risk prices under all prior maximum Sharpe ratios, which is consistent

with the findings of Goyal & Saretto (2009) and Tian & Wu (2023). After accounting for

all other risks, ivrv might capture residual mispricing in options.9 A high spread in implied

9As ivrv together with doi is used for the double-sort to construct the 25 long-only test assets, the high
importance of the factor might be mechanical. However, we re-estimate the BMA using instead a double
sort on be me and mcap to construct the 25 long-only test assets. As reported in Internet Appendix IA3,
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versus realized volatility on average indicates overpricing, and thus, such options earn lower

consequent returns. On the other hand, jr captures the risks of market makers that demand

a premium for options with high jump risk. The positive posterior risk price for omom is

consistent with the findings of Heston et al. (2023) and Käfer et al. (2023), who find that past

performance predicts future performance in delta-neutral option positions. In this context,

Tian & Wu (2023) point out that option momentum effects might be driven by persistence in

the risk magnitude variations of the underlying, unspecified risk sources.10 As in Bryzgalova,

Huang, & Julliard (2023), a large number of factors is assigned a posterior probability very

close to the prior probability, indicating that these factors are weakly identified. However, for

less shrinkage, most of these factors become unlikely candidates for the SDF. Interestingly, a

group of correlated factors including ebit sale, ope be, ocfq saleq std, and cash at are

moderately likely candidates of priced risk for low model complexity, but when less shrinkage

is imposed only cash at is selected more times than expected. This finding points to a more

pronounced role of model selection over model aggregation when regularization is limited.

Also noteworthy is that under moderate to high shrinkage, no non-traded factor reaches

posterior inclusion probabilities larger than 50.6%.

For delta-hedged puts, a similar picture arises. Again, the most important factors are

ivrv, omom, and jr with posterior inclusion probability significantly larger than 50% across

all prior maximum Sharpe ratios. The signs of risk prices remain consistent with expectations

ivrv remains the factor with the highest posterior inclusion probability.
10One might argue that ivrv and omom might capture multiple sources of risks linked to more interpretable

characteristics. However, in Internet Appendix IA4, we replicate the analysis without those two factors. No
factor with previously low inclusion probability steps up to take the place of ivrv and omom, indicating that
they are not driving out other factors.
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Fig. 3. Model probability

This figure shows model probabilities of the most common 2000 models observed in the final 450,000 Markov
chain elements of the BMA-SDF estimation with a prior Sharpe ratio of 75% of the ex-post maximum Sharpe
ratio. The left panel (a) is based on calls, and the right panel (b) is based on puts. All other specifications
of the BMA follow those detailed in Figure 1.

that arise from prior literature. Interestingly, the posterior inclusion probability for jr is

slightly higher for puts than for calls, providing evidence that jump risk in the options’

underlying is even more influential in the pricing of puts than in the pricing of calls. Instead

of cash at, ivol wins the horse race as the fourth important factor in pricing the put test

assets for low regularization.

4.2. In-sample model uncertainty and dimensionality

Next, we discuss the model probability and model dimensionality of our in-sample BMA-

SDF estimation. In Figure 3, we plot the probability of the 2,000 most common factor

combinations in the final 450,000 Markov chain elements with a prior maximum Sharpe ratio

of 75% of the ex-post maximum Sharpe ratio. Panel (a) shows the BMA-SDF estimation

for calls, and Panel (b) shows the BMA-SDF estimation for puts, respectively. Very similar
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Fig. 4. Number of factors

This figure displays the distribution of the number of factors in models chosen by the final 450,000 Markov
chain elements of the BMA-SDF estimation for different prior Sharpe ratios. The left panel (a) is based on
calls and the right panel (b) is based on puts. All other specifications of the BMA follow those detailed in
Figure 1.

to the results of Bryzgalova, Huang, & Julliard (2023) for the cross-section of stock return,

there is no stand-out model. For calls, the most common model arises six times, followed

by four more models arising five times. For puts, again only one model arises six times,

resulting in a probability of less than a basis point. Further, there are close to one hundred

models that appear four times. While these posterior model probabilities are significantly

higher than the ex-ante probability of 1
2

51 ∼ 4.44 × 10−16, they indicate that there are no

hugely dominant factor combinations but rather large sets of similarly probable models. We

count the number of factors in each of the final 450,000 Markov chain elements for different

prior maximum Sharpe ratios and plot the distribution of model dimensionality. For high

shrinkage, this distribution centers around the expected number of 0.5× 51 factors, namely

the prior inclusion probability of each factor times the number of factors.

Evidently, the data cannot sufficiently rule out that the true SDF is rather sparse, giving
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more weight to dense models and high dimensionality. Only for the largest prior Sharpe ratio

does the average number of factors drop significantly. As previously described and explained

by Bryzgalova, Huang, & Julliard (2023), this result is likely due to rather weakly identified

factors driving out other factors when less shrinkage is applied. In that case, the BMA leads

to moderately more model selection rather than aggregation.

4.3. In-sample and cross-sectional out-of-sample asset pricing

We benchmark the BMA-SDF to previously proposed low-dimensional factor models with

regard to their cross-sectional pricing power. The benchmark models include the three-factor

model of Horenstein et al. (2022), the two-factor model of Zhan et al. (2022), the five-factor

model of Tian & Wu (2023), and the four-factor model of Agarwal & Naik (2004). The

models are described in detail in Internet Appendix IA2. Additionally, we add a model

including all 51 factors as well as an option version of the single-factor CAPM, where we use

ew ret as the sole factor. For all benchmark models, we use GMM with a GLS weighting

matrix to estimate risk prices. For the BMA-SDF, we use the posterior risk prices estimated

with various prior maximum Sharpe ratios reported in Table A1 and Table A2. An intercept

is added to all models.

We calculate average in-sample pricing errors for the 30 traded factors and the 25 portfolios

sorted on ivrv and doi. All returns are standardized to an annual volatility of 100%. Fol-

lowing Bryzgalova, Huang, & Julliard (2023), we report the root mean square error (RMSE),

the mean absolute percentage error (MAPE), as well as R-squared values both without (R2
ols)
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Table 3: Cross-sectional pricing performance - Calls.
This table reports four performance measures of cross-sectional pricing for different factor models. For
the BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2 and reported in
Table A1. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk prices.
Benchmark models are described in Internet Appendix IA2. CAPM refers to a one-factor model utilizing
only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets
are the 26 long-short factors detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on
FF17 industry sorts. Portfolio returns are calculated with equal call option weighting. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.348 1.03 0.115 0.059 51 factors 0.078 0.042 0.997 0.934
25%-SRpr 1.099 0.846 0.387 0.162 CAPM 1.421 1.104 0.008 0.028
40%-SRpr 0.884 0.681 0.604 0.278 HVX 0.971 0.686 0.536 0.265
60%-SRpr 0.632 0.484 0.798 0.419 ZHCT 1.217 0.963 0.307 0.077
75%-SRpr 0.477 0.369 0.885 0.512 AN 1.225 1.031 0.237 0.13
90%-SRpr 0.347 0.279 0.939 0.605 TW 1.408 1.172 0.353 0.364

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.407 0.934 0.151 0.009 51 factors 1.534 1.113 -0.007 -3.914
25%-SRpr 1.13 0.774 0.453 0.145 CAPM 1.491 1.012 0.048 -0.011
40%-SRpr 0.94 0.638 0.622 0.243 HVX 1.029 0.863 0.546 0.298
60%-SRpr 0.769 0.5 0.746 0.336 ZHCT 1.078 0.825 0.502 0.044
75%-SRpr 0.682 0.427 0.8 0.383 AN 1.249 1.007 0.332 0.057
90%-SRpr 0.619 0.382 0.836 0.418 TW 1.329 1.004 0.244 -0.196

and with a weighting matrix (R2
gls). For out-of-sample tests, we utilize the same estimated

risk prices but use them to price 26 long-short factors detailed in Internet Appendix IA1.4.2

and proposed by Goyal & Saretto (2024) as well as 17 long portfolios based on FF17 industry

sorts. Pricing performance is reported in Table 3 for assets constructed from calls and in

Table 4 for assets constructed from puts.

Several notable observations can be drawn. First, pricing performance improves the less

shrinkage is applied. This is true for both puts and calls and all four performance metrics.

Even for out-of-sample pricing, it is beneficial to use a high prior maximum Sharpe ratio.

There seems to be no problem with overfitting in the BMA approach even when allowing high
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Table 4: Cross-sectional pricing performance - Puts.
This table reports four performance measures of cross-sectional pricing for different factor models. For
the BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2 and reported in
Table A2. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk prices.
Benchmark models are described in Internet Appendix IA2. CAPM refers to a one-factor model utilizing
only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets
are the 26 long-short factors detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on
FF17 industry sorts. Portfolio returns are calculated with equal put option weighting. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.518 1.175 0.116 0.047 51 factors 0.035 0.02 0.999 0.988
25%-SRpr 1.203 0.921 0.395 0.17 CAPM 1.568 1.247 -0.008 0.011
40%-SRpr 0.949 0.713 0.614 0.301 HVX 1.346 0.97 0.268 0.252
60%-SRpr 0.67 0.501 0.806 0.451 ZHCT 1.229 0.919 0.362 0.108
75%-SRpr 0.503 0.384 0.89 0.54 AN 1.508 1.153 0.104 0.072
90%-SRpr 0.369 0.297 0.941 0.619 TW 1.36 1.081 0.444 0.376

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.325 0.92 0.169 -0.265 51 factors 1.532 1.192 -0.111 -3.616
25%-SRpr 1.017 0.741 0.511 0.037 CAPM 1.403 1 0.069 -0.138
40%-SRpr 0.802 0.607 0.696 0.221 HVX 1.371 1.113 0.111 0.234
60%-SRpr 0.607 0.461 0.825 0.377 ZHCT 0.885 0.733 0.629 0.118
75%-SRpr 0.505 0.386 0.88 0.459 AN 1.41 1.012 0.059 -0.065
90%-SRpr 0.431 0.332 0.912 0.525 TW 1.227 0.934 0.289 -0.111

model complexity. Second, and in contrast to the lack of overfitting when using the BMA-

SDF, the 51-factor model exhibits the highest in-sample pricing performance but performs

badly in the out-of-sample tests. On the other hand, the BMA-SDF estimations beat all

other benchmark models, both in-sample and out-of-sample, when the prior Sharpe ratio is

higher or equal to 60% of the ex-post maximum Sharpe ratio. Again, this observation holds

for all four performance metrics and for both calls and puts. For the highest considered

prior Sharpe ratio, and therefore the lowest level of shrinkage, the BMA-SDF achieves an

extraordinarily high out-of-sample R2
ols of 0.84 for calls and 0.91 for puts. The benchmark

models perform significantly worse, even though some of them include the factors that were
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assigned the highest posterior inclusion probability. As am example. the factor model of Tian

& Wu (2023) includes three of the four stand-out factors, namely ivrv, jr, and omom, but

yields worse in-sample and out-of-sample results. This weaker performance can arise from

both different risk price estimations for these factors in the GMM versus the BMA, or from

other factors in the BMA-SDF that yield additional explanatory power in the cross-section

of call and option prices. In Internet Appendix IA5, we show the out-of-sample pricing

performance measures separately for the industry portfolios and the 26 long-short portfolios

and also add a third set of test assets, namely 25 long portfolios based on independent 5

× 5 sorts on the book-to-market ratio (be me) and the market capitalization (mcap) of the

options’ underlying stocks. Again, the BMA-SDF significantly reduces pricing errors for all

three sets of test assets compared to the benchmark models.

4.4. Pricing performance of reduced-form models implied by the BMA-SDF

So far, we have reported significant improvements in the asset pricing performance of the

BMA-SDF over previously proposed low-dimensional benchmark models. Together with the

large average number of factors in the models proposed by the BMA, this provides evidence

that the true SDF is rather dense than sparse. Nonetheless, in this section, we test whether

the worse performance of the benchmark models is due to a lack of model dimensionality

or a weaker selection of factors. To do so, we introduce new “best factor” models. Factors

with the highest posterior inclusion probabilities, as yielded by this BMA-SDF estimation

process with a prior maximum Sharpe ratio of 60% of the ex-post maximum Shape ratio,
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Table 5: Pricing performance of factors with highest posterior inclusion
probability.

This table reports four out-of-sample performance measures of cross-sectional pricing for different factor
models, based both on calls and puts. For the first 4 models, factors with the highest ex-post inclusion
probabilities are included. These probabilities are taken from the BMA estimation using a prior maximum
Sharpe ratio of 75% of the ex-post maximum Sharpe ratio. Benchmark models are described in Internet
Appendix IA2. For all models, we use GMM with a GLS weighting matrix to estimate risk prices in-sample.
Out-of-sample test assets are the 26 long-short factors detailed in Internet Appendix IA1.4.2 as well as 17
long portfolios based on FF17 industry sorts. Portfolio returns are calculated with equal option weighting.
RMSE and MAPE are based on returns standardized to an annual volatility of 100%.

Panel A: Out-of-Sample Pricing - Calls Panel B: Out-of-Sample Pricing - Puts

Models RMSE MAPE R2
ols R2

gls RMSE MAPE R2
ols R2

gls

Best factor 1.07 0.844 0.51 0.209 1.415 1.089 0.053 0.103
Best 4 factors 0.705 0.517 0.787 0.025 0.494 0.39 0.884 0.528
Best 10 factors 0.605 0.427 0.843 0.336 0.412 0.338 0.92 0.533
Best 25 factors 0.657 0.429 0.815 0.25 0.425 0.334 0.915 0.4

51 factors 1.534 1.113 -0.007 -3.914 1.532 1.192 -0.111 -3.616
CAPM 1.491 1.012 0.048 -0.011 1.403 1 0.069 -0.138
HVX 1.029 0.863 0.546 0.298 1.371 1.113 0.111 0.234
ZHCT 1.078 0.825 0.502 0.044 0.885 0.733 0.629 0.118
AN 1.249 1.007 0.332 0.057 1.41 1.012 0.059 -0.065
TW 1.155 0.877 0.429 0.009 1.227 0.934 0.289 -0.111

are chosen for these models. In Table 5, we show the out-of-sample pricing performance of

four such models with one, four, ten, and 25 factors, respectively. Risk prices are not taken

from the BMA-SDF but rather estimated with GMM and a GLS weighting matrix.

Our results indicate that, for both calls and puts, the “best factor” models with more

than one factor outperform all of the benchmark models. Only the model of Horenstein et

al. (2022) for calls, the model of Zhan et al. (2022) for puts, and the 51-factor model yield

better pricing than the single-factor model with ivrv as the sole factor. Interestingly, the

four-factor models with ivrv, jr, and omom strongly outperform even the model of Tian &

Wu (2023) which shares those three factors. Adding cash at as a fourth call factor and

ivol as a fourth put factor greatly enhances the pricing performance of the models. Overall,

our results indicate that based on pricing performance there exists an optimal number of
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factors in this approach. While the ten-factor model improves upon the performance of the

four-factor model, there is a drop in out-of-sample pricing power when including the best

25 factors or even all factors. Nevertheless, we conclude that the BMA approach is useful,

even if only for model selection based on the posterior inclusion probabilities, as seemingly

relevant factors are selected. Even without the posterior risk prices, we can construct models

that beat previously proposed factor models in pricing the cross-section of options.

4.5. Out-of-sample asset pricing using different time periods

Whereas the previous two subsections focus on the out-of-sample performance of the BMA-

SDF and several benchmark models using a different cross-section of test assets, we now

turn to assess the time-series pricing performance of the option factor models. To do so, we

split the sample into two halves, namely from March 1997 to July 2009 and from August

2009 to December 2021.11 We then determine posterior factor probabilities and factor risk

prices over the first (second) subperiod and evaluate the out-of-sample performance using

the second (first) subperiod of factors and in-sample test assets. Similarly, for our reduced-

form benchmark models, we first determine risk prices via GMM using the first (second)

subperiod and subsequently evaluate the pricing performance by predicting the returns of

the test assets in the second (first) subperiod. This sample-split approach is common in the

literature for time-series out-of-sample analysis (Linnainmaa & Roberts, 2018; Gu, Kelly, &

Xiu, 2020).12

11As our factor returns cover a total period of 299 months, we omit the first-month factor return observa-
tions of February 1997 to obtain two halves of equal length.

12In this context, Bryzgalova, Huang, & Julliard (2023) point out that it would be optimal to assess time-
series out-of-sample performance over factors’ post-publication period. However, the authors also state that
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Initially, we again focus on the posterior probabilities resulting from the spike-and-slab

approach outlined in Section 2. Figure B1 displays factor probabilities for calls, Figure B2

for puts. In each figure, the upper Panel (a) shows posterior factor probabilities estimated

over the first sample subperiod as a function of the prior Sharpe ratios set to a range of 10%,

25%, 40%, 60%, 75%, and 90% of the ex-post maximum Sharpe ratio, Panel (b) includes

posterior probabilities for estimations over the second subperiod. Strikingly, we find that

for the different estimation periods, the overall composition of option factors that are likely

part of the option SDF changes. For calls, during the first sub-estimation period, ivrv is the

most likely factor to be included in the SDF. Other factors that have a posterior probability

of clearly above 50% are omom and the stock investment factor CMA that gains in importance

for smaller degrees of shrinkage. jr strongly falls off in terms of posterior probability for

smaller prior Sharpe ratios. For the second subperiod, the overall insights from the posterior

probabilities change slightly. Now, ivrv and omom are in a very close race for the most

probable factor in the SDF, with ivrv only slightly winning out for the smallest imposed

degree of shrinkage. Moreover, jr is a likely factor candidate included in the SDF.

The differences between estimation periods are also pronounced for puts as can be seen

in Figure B2. For the first subperiod, ivrv is by a large margin the most likely part of the

SDF in the options market. Compared to ivrv, omom and jr only seem to play a minor role

comparatively with exterior probabilities of roughly 55% at the prior Sharpe ratios of 60% of

the maximum. The results for the posterior probabilities change considerably in the second

due to factors in their sample being only recently featured in published academic work, this ideal approach
is not feasible. For our sample of option factors, the relevant publications for most factors tend to be even
more recent than for many established stock factors. Hence, we rely on an even sample split for our purpose.
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Table 6: Out-of-sample pricing performance for different estimation and
evaluation periods - Calls.

This table reports four performance measures of time-series out-of-sample pricing for different call factor
models. In Panel A (B), we use the first (second) half of the sample period, March 1997 to June 2006 (July
2006 to December 2021), for the model estimation and recovery of risk prices and evaluate its pricing ability
on the omitted half. For the BMA-SDF, prices of risk are estimated using the methodology outlined in
Section 2. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk prices.
Benchmark models are described in Internet Appendix IA2. CAPM refers to a one-factor model utilizing
only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets
are the 26 long-short factors detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on
FF17 industry sorts. Portfolio returns are calculated with equal call option weighting. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: estimation period: March 1997 to July 2009,
evaluation period: August 2009 to December 2021

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.628 1.226 0.101 0.018 51 factors 6.537 5.724 -10.986 -11.164
25%-SRpr 1.337 0.994 0.383 0.067 CAPM 1.753 1.329 -0.024 0.006
40%-SRpr 1.054 0.792 0.63 0.118 HVX 1.979 1.511 -0.454 -0.079
60%-SRpr 0.834 0.698 0.807 0.169 ZHCT 1.946 1.464 -0.262 -0.048
75%-SRpr 0.913 0.799 0.782 0.185 AN 1.826 1.475 -0.319 -0.139
90%-SRpr 1.16 1.025 0.616 0.176 TW 1.914 1.451 -0.386 -0.053

Panel B: estimation period: August 2009 to December 2021,
evaluation period: March 1997 to July 2009

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.448 1.141 0.052 -0.005 51 factors 14.549 11.211 -94.935 -37.209
25%-SRpr 1.403 1.129 0.134 0.028 CAPM 1.493 1.185 0.01 -0.031
40%-SRpr 1.37 1.123 0.212 0.065 HVX 1.594 1.298 -0.01 0.006
60%-SRpr 1.241 1.031 0.368 0.121 ZHCT 1.719 1.367 -0.19 -0.048
75%-SRpr 1.098 0.926 0.502 0.165 AN 1.665 1.276 -0.22 -0.179
90%-SRpr 0.968 0.845 0.609 0.201 TW 1.795 1.415 -0.263 -0.113

sub-estimation period. Now, although ivrv remains the most likely factor candidates, both

omom and jr also appear as distinctive and probable factors to be included in the SDF.

Although we cannot draw definite conclusions as to why the factor composition of the SDF

in the options market, as reflected by the changing relative posterior probabilities described

above, seems to change noticeably over time, a couple of observations are important to

mention. First and foremost, many of the factors that appear to gain relevance during the

second half of the sample period, namely omom and jr, tend to proxy for risks that market
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Table 7: Out-of-sample pricing performance for different estimation and
evaluation periods - Puts.

This table reports four performance measures of time-series out-of-sample pricing for different put factor
models. In Panel A (B), we use the first (second) half of the sample period, March 1997 to June 2006 (July
2006 to December 2021), for the model estimation and recovery of risk prices and evaluate its pricing ability
on the omitted half. For the BMA-SDF, prices of risk are estimated using the methodology outlined in
Section 2. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk prices.
Benchmark models are described in Internet Appendix IA2. CAPM refers to a one-factor model utilizing
only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets
are the 26 long-short factors detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on
FF17 industry sorts. Portfolio returns are calculated with equal put option weighting. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: estimation period: March 1997 to July 2009,
evaluation period: August 2009 to December 2021

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.986 1.501 0.078 0.027 51 factors 5.278 4.699 -3.576 -2.625
25%-SRpr 1.718 1.295 0.299 0.093 CAPM 2.129 1.625 -0.044 0.009
40%-SRpr 1.467 1.127 0.499 0.163 HVX 2.372 1.771 -0.41 -0.113
60%-SRpr 1.215 1 0.693 0.239 ZHCT 2.129 1.605 -0.073 0.014
75%-SRpr 1.138 1.008 0.767 0.273 AN 2.118 1.618 -0.042 0.072
90%-SRpr 1.25 1.129 0.748 0.281 TW 2.292 1.713 -0.362 -0.134

Panel B: estimation period: August 2009 to December 2021,
evaluation period: March 1997 to July 2009

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.487 1.135 0.064 0.016 51 factors 12.622 11.419 -29.222 -11.442
25%-SRpr 1.397 1.085 0.14 0.056 CAPM 1.571 1.212 0.011 0.01
40%-SRpr 1.427 1.15 0.159 0.091 HVX 1.566 1.258 0.098 0.012
60%-SRpr 1.427 1.183 0.23 0.148 ZHCT 1.908 1.529 -0.224 -0.073
75%-SRpr 1.387 1.168 0.329 0.199 AN 1.414 1.108 0.226 -0.043
90%-SRpr 1.348 1.142 0.452 0.254 TW 1.885 1.51 -0.198 -0.104

makers face in the options market. The fact that these factors remain relevant and even

increase in importance is in line with McLean & Pontiff (2016) who point out that the

relevance of (stock) factors tends to decrease over time if factors reflect mispricing, whereas

the importance of factors tends to persist if they reflect risk. Moreover, the decreasing

relevance of ivrv, a factor that can reflect general mispricing in the options market or even

overreaction by investors (Goyal & Saretto, 2009), hints at a trend of decreasingly pronounced

but still existing mispricing in the options market in later periods. On the contrary, during
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earlier periods, general mispricing, as represented by ivrv, appears to have been a much

more relevant driver of option returns compared to factors that reflect risk and only have

posterior probabilities marginally larger than 50%.

Finally, we turn to the results for the time-series out-of-sample performance. Tables 6 and 7

reports the analogous results to Panel B in Tables 3 and 4 for calls and puts respectively.

Panel A (B) shows the results for using the first (second) half of the sample period for model

estimation and Panel B (A) shows the results for the second (first) subperiod as the model

evaluation period. The BMA-SDF outperforms the reduced-form benchmark models on the

right-hand side of the panels across all subperiod specifications for both calls and puts.

Consequently, the BMA-SDF confirms its superiority vis-à-vis other benchmark models in

the time-series out-of-sample test as well.

5. Additional analyses

5.1. Accounting for transaction costs

Detzel et al. (2023) find that some stock market factors with the highest returns also incur

the highest trading costs. This is in line with efficiently inefficient markets because, if not for

trading costs or risk-based explanations, such anomalies should be quickly arbitraged away.

The authors argue that if an asset pricing model is estimated from factor returns without

subtracting transaction costs, the resulting SDF cannot distinguish between true sources

of risk premia, which inform the implementable optimal portfolio, and unattainable paper
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profits that vanish after accounting for trading frictions.

Although transaction costs in options are likely lower than what quoted spreads suggest

(Muravyev & Pearson, 2020), even conservative estimates of realized transaction costs sig-

nificantly reduce factor returns in our sample. This motivates estimating the BMA-SDF net

of transaction costs to identify likely relevant sources of true, attainable risk premia. To

mitigate the impact of transaction costs, we follow Goyal & Saretto (2024) and Zhan et al.

(2022) among others, and turn away from the month-end to month-end holding periods to

expiration-date to expiration-date holding periods. More precisely, we initiate option po-

sitions and construct factors each Monday after the third Friday of the month. The daily

delta-hedged options are then held until maturity. Thus, no transaction costs are incurred

when closing the positions. In line with the results by Muravyev & Pearson (2020), we sub-

tract only 30% of the quoted half spread at position initiation when calculating the option

profit/loss in Equation (5) for a long position. We add 30% of the quoted half spread for

short positions so that the effect of increasing transaction costs in shorted options is negative

when calculating long-short factor returns.

To construct factors, we assign long and short positions in the low and high decile port-

folios such that the factor yields positive returns before transaction costs. Therefore, if a

factor yields negative returns after transaction costs, it is not an available strategy (Goyal

& Saretto, 2024). As reported in Figure C1 in the Appendix, some factors yield extremely

negative Sharpe ratios after accounting for transaction costs because they are trading highly

illiquid options. Since factors have to be able to price themselves when estimating the BMA-
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SDF, keeping these factors in the sample will lead to some of them being assigned a high

posterior inclusion probability. However, these results would be misleading for an investor

who estimates the SDF to identify relevant (and profitable) sources of risk premia and not

strategies that incur high transaction costs. Therefore, we exclude long-short factors from

the factor set as test assets if the mean factor returns net of transaction costs are signifi-

cantly negative at the 5% level.13 For calls, we filter out nine factors of the factor set and

eleven long-short out-of-sample test assets. For puts, 13 factors of the factor set and nine

out-of-sample test assets are excluded.

We report posterior factor inclusion probabilities when accounting for transaction costs in

Figure C2 in the Appendix. Even net of transaction costs, ivrv and omom remain the two

factors with the highest inclusion probability. For puts, this probability quickly approaches

one for low shrinkage, i.e., a high prior Sharpe ratio. While these factors capture general

(persistent) mispricing, the results indicate that this mispricing is not solely based on trading

frictions. After accounting for transaction costs, the high Sharpe ratios on ivrv and omom

as well as the factors’ highly probable inclusion in the SDF point towards the notion that

these factors capture underlying risks for investors that keep arbitrage capital away. On

the other hand, the third important factor, jr, yields returns close to zero for calls and is

even excluded for puts after transaction costs. The factor is trading expensive options in

terms of bid-ask spreads, and thus returns reflect trading frictions and limits to arbitrage,

but not necessarily risk premia.14 We report the cross-sectional pricing performance of the

13We follow Newey & West (1987) to calculate standard errors of the sample mean estimation robust to
autocorrelation for up to four months when determining significance levels.

14Note that we are not optimizing factor returns after transaction costs, i.e., we do not trade-off between
transaction costs and the strength of the characteristics’ signals. Adopting the latter could still yield a
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BMA-SDF in Tables C1 and C2. We do not exclude any factors in the low-dimensional

benchmark models, even if returns are significantly negative. Again, the BMA-SDF with

low shrinkage yields lower pricing errors than any of the benchmark models, both in-sample

and out-of-sample.

5.2. Impact of retail investors

A considerable number of option factors are based on the hypothesis that investors in the

options market exhibit behavioral biases and preferences for certain options contracts. For

instance, Byun & Kim (2016) demonstrates that investor preference for lottery-like options

leads to overvaluation and subsequent lower returns. Other related works such as Stein

(1989), Poteshman (2001), or Goyal & Saretto (2009) discuss and investigate the effects of

investor over- or underreaction in the options market. Hence, this subsection aims to assess

different implications for the composition of the SDF in the options market depending on the

role of behavioral influences. For this purpose, we perform our empirical analysis for options

with either high or low retail investor activity. This approach is in line with the view that

retail investors are more susceptible to behavioral biases in their trading and therefore impact

asset returns (see e.g., Hvidkjaer, 2008; Kaniel, Saar, & Titman, 2008; Barber, Odean, &

Zhu, 2008; Kumar, 2009; Han & Kumar, 2013).

We utilize signed trade and volume data from four US options exchanges operated by

NASDAQ: Nasdaq GEMX (GEMX), Nasdaq International Security Exchange (ISE), Nasdaq

Options Market (NOM), and Nasdaq PHLX (PHLX). These exchanges comprise a significant

profitable jump risk factor.
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share of the overall US equity options market.15 The data provides signed volumes and the

number of trades (open buy/sell; close buy/sell) by non-market makers including professional

customers, firm customers, and all other customers. The overall sample period covered by

the data from the four exchanges ranges from May 2005 to February 2021. We only consider

options with maturity between 30 and 70 days and a strike-to-spot ratio, K/S, between

0.8 and 1.2. These filters yield a sample of signed volumes that closely match the time to

expiration and moneyness of the short-maturity ATM options considered in our previous

analyses.

To measure the activity of retail clients in the options market, we compute the share of

“Customer - Volume of small trades” over the total end-user volume on the four options

exchanges during a month t. For both call and puts options, we only consider the volume

share of retail investors for the respective option type. Although the resulting variable

RetailShare does not precisely reflect the share of retail investors in the options market,

we consider small trades by non-professionals and non-firm customers as the volume bucket

with the lowest relative investor sophistication.

We split our contract-level option data based on the median of RetailShare at factor

construction and rebuild option factors (and test assets) for both subsamples. Calls and

puts exhibit similar average median RetailShare values of 56.6% and 53.5%. For the factor

return months from June 2005 to March 2021, the exchange volume data covers over 98% of

the contracts in our initial options data. To obtain a suitable baseline for the high and low-

15In 2021, the four exchanges held a market share of roughly 25%, see data from the Options Clearing
Corporation.
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retail results, we determine posterior probabilities of factors using all the options contracts

covered by the signed volume data for the periods starting in 2005. The resulting posterior

probabilities in Figure D1 reveal one notable insight for the option factors constructed with

the entire sample of options with signed volume information: omom is the most likely factor

to be included in the SDF, whereas ivrv only follows with the second-highest posterior

probability. To the contrary, in most of the baseline analyses, our results indicate a higher

importance of ivrv compared to omom.

Next, we compute posterior factor inclusion probabilities separately for factors constructed

using either high or low-RetailShare options. For calls and factors constructed based on

options with higher retail activity in Figure D2 in the Appendix, the familiar important

factors ivrv, jr, cash at, and omom are among the most likely factors to be included in the

SDF. However, compared to the results using factors constructed on all options with signed

volumes in Figure D1 in the Appendix, ivrv is the most dominant factor in terms of pos-

terior probability. This change of relative posterior probability hints at general mispricing,

as reflected by ivrv, being more relevant for explaining returns of options that are more

influenced by retail trading. The factor log price is also among the more likely factors

with a posterior probability of over 60% for larger prior Sharpe ratios. The motivation for

this factor, as outlined by Boulatov et al. (2022), is that inattention leads investors regard

options on low-priced stocks as unwarrantedly cheap. Assuming that less sophisticated in-

vestors being more prone to this fallacy, the log price factor is arguably more important

when pricing options with a high retail share.16

16On the other hand, for calls and low-RetailShare options, the resulting posterior probabilities are more
similar to the benchmark in Figure D1 in the Appendix with omom representing the mostly likely candidate
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Turning to puts in Figure D3 in the Appendix, we observe that ivrv and jr are the only

two standout factors with large posterior probabilities. omom has only a comparatively low

posterior probability of barely above 55% for a prior Sharpe ratio of 60% of the maximum.

Again, the key role of ivrv in the sample with high-retail options might point to a more

pronounced role of mispricing for these options. For factors based on low-RetailShare, omom

emerges as the sole factor with high posterior probability by a large margin. In particular,

the posterior probability of ivrv below 60% in any prior Sharpe ratio setting is indicative of

a less central role of mispricing for puts with low retail activity. Finally, Tables D1 and D2 in

the Appendix show out-of-sample tests for the BMA-SDF versus reduced-form benchmark

models based on factors constructed on subsamples with high and low retail activity. In

general, we verify our baseline results of superior pricing performance by the BMA-SDF for

prior Sharpe Ratios of 40% of the maximum or higher, regardless of the high or low-retail

split.

5.3. Robustness tests

We consider several robustness checks to show the stability of our main results. In particu-

lar, we adjust the weighting of single-option returns in the construction of option factors and

test assets. Additionally, we use an alternative option return definition, i.e., margin-adjusted

returns, and a more conservative prior factor inclusion probability.

Instead of assigning equal weights to single option returns, we first value-weight returns

by the option contract’s dollar-open interest and the market capitalization of the underlying

of being included in the SDF, followed by ivrv and jr.
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stock at portfolio formation. In the spirit of Jensen et al. (2023), we limit the impact of

options with extremely high dollar-open interest and market capitalization by winsorizing

the weighting variables at the monthly 80th percentile. Most notably, for calls and puts

in Figure IA6.1, omom is the most likely factor included in the SDF for moderate and low

degrees of shrinkage. ivrv appears to only play an important role for low prior Sharpe ratio

values and sharply drops in terms of posterior probability after allowing for less shrinkage.

For puts, both ivrv and omom exhibit by far the highest posterior probabilities.17 We also

show robustness checks for value-weights by the market capitalization of the underlying

stock. For calls in Panel (a) of Figure IA6.2 in the Internet Appendix, omom, ivrv, and jr

emerge as the most relevant factors based on their posterior probabilities. For puts in Panel

(b) of Figure IA6.2 in the Internet Appendix, in addition to these three option factors, hc

appears to be a likely candidate for being included in the SDF. The out-of-sample pricing

performance vis-à-vis the benchmark factors remains robust (Tables IA6.3 and IA6.4 in the

Internet Appendix).

Next, we offer robustness analyses for margin-adjusted returns as an alternative option

return definition used to construct option factors and test asset returns. Margin-adjusted

returns account for the margin requirements when setting up hedged long and short option

positions. Details on the definition and construction of margin-adjusted option returns are

displayed in Internet Appendix IA7. For calls in Panel (a) of Figure IA7.1, next to ivrv,

omom, jr, and cash at (for low degrees of shrinkage) that are important factor in our baseline

17As depicted in Tables IA6.1 and IA6.2 in the Internet Appendix, the BMA-SDF continues to provide
superior cross-sectional out-of-sample pricing performance compared to the benchmark reduced-form factor
models.
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estimation in Section 4.1, the equal-weighted option market factor, ew ret, displays a pos-

terior probability considerably above the prior of 50%. Also, the embedded leverage factor,

embedlev, displays large posterior probabilities for high and moderate shrinkage levels. The

reason for the significance of this factor in the SDF might be due to the mechanical rela-

tion between margin-adjusted returns and embedded leverage (options with high embedded

leverage typically have higher margin requirements because they present a greater risk to

the investor) and margins are the highest for short call positions due to their unlimited loss

potential. For puts in Panel (b) of Figure IA7.1, ivrv, omom, and jr are the most probable

factors with high posterior probabilities. As can be seen in Tables IA7.1 and IA7.2, the

BMA-SDF outperforms the benchmark factor models similarly to our baseline results.

Finally, we follow Dickerson et al. (2023) and conduct the main analysis with more conser-

vative prior beliefs about model dimensionality, drawing initial factor inclusion probabilities

from a Beta(3, 12) distribution, which translates to an expected inclusion of 20% of factors.

Results are reported in Internet Appendix IA8. As shown in Figure IA8.1, the same four calls

factors and put factors that emerged in the main analysis emerge as likely SDF candidates.

The posterior probabilities for the other factors are around or below the initial 20%, which

reflects the prior assumption of sparsity. However, while still beating the low-dimensional

benchmark models with low regularization, results in Tables IA8.1 and IA8.2 suggest that

out-of-sample pricing performance is worse than when estimating the BMA-SDF by drawing

factor inclusion probabilities from a Beta(1, 1) distribution, providing further evidence that

the true SDF for equity options is dense in nature.
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In summary, despite some minor changes in the posterior factor probabilities, our robust-

ness checks show that the BMA-SDF’s cross-sectional pricing performance remains robust

across different return weighting specifications and option return definitions.

6. Conclusion

Using the Bayesian method proposed by Bryzgalova, Huang, & Julliard (2023), we estimate

posterior risk prices and probabilities of factors included in the SDF that prices the cross-

section of delta-hedged option returns. Considering a set of 30 traded option factors and

15 nontraded factors in combination with six widely established stock factors, we find that

the difference between implied and realized volatility, option return momentum, and jump

risk are included in the SDF with high probability. To a lesser extent, other factors such as

the cash-to-assets ratio or idiosyncratic volatility are further factor candidates that span the

risks driving option returns. Similar to the results for the stock market, we observe that the

SDF is dense in the space of observable option factors, with the average number of factors

included in the SDF being close to 25 for high and moderate levels of shrinkage.

We show that the estimated Bayesian model averaging SDF (BMA-SDF) exhibits su-

perior cross-sectional out-of-sample pricing performance compared to reduced-form option

benchmark models such as the model proposed by Horenstein et al. (2022) or Tian & Wu

(2023), pricing 26 additional option anomalies and 17 industry-sorted option portfolios.

A reduced-form four-factor model based on the exterior probability implied by the BMA

method also outperforms existing benchmark models out-of-sample. Finally, implied-minus-
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realized volatility and option momentum remain important factors in the SDF after transac-

tion costs and mispricing tends to be more pronounced in subsamples that construct factors

and test assets based on options with high retail activity.

Primarily, our paper contributes to the nascent literature on factors explaining the cross-

section of option returns. Our empirical results verify the relevance of factors such as the

difference between implied and realized volatility, jump risk, and option momentum in pre-

viously proposed models such as Horenstein et al. (2022) or Tian & Wu (2023). At the

same time, the dense model dimensionality implied by the option BMA-SDF highlights the

benefits of including more than three to four factors in linear option factor models to account

for multiple sources of imperfectly identified sources of risk.
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A Posterior factor inclusion probabilities and risk prices

Table A1: Posterior factor inclusion probabilities and prices of risk - Calls.
This table lists posterior factor inclusion probabilities E[γj |data] and posterior prices of risk E[λj |data] for
each factor j. The continuous spike-and-slab BMA approach is detailed in Section 2. We employ non-
informative prior beliefs about factor inclusion, drawing factor inclusion probabilities from a Beta(1, 1)
distribution. Prior annualized Sharpe ratios range from 10% to 90% of the ex-post maximum achievable
Sharpe ratio. The factor set includes returns of 30 traded long-short factors based on delta-hedged call
returns as well as 21 non-traded factors from February 1997 to December 2021. Detailed descriptions of
the characteristics used for factor construction are documented Internet in Appendix IA1.1. Additional test
assets are 5× 5 long portfolios based on independent monthly sorts on ivrv and doi. Portfolio returns are
calculated with equal call option weighting.

Post. Factor Inclusion Probability Post. Price of Risk

Prior Sharpe Ratio (% of max) Prior Sharpe Ratio (% of max)

Factors: 10% 25% 40% 60% 75% 90% 10% 25% 40% 60% 75% 90%

ivrv 0.525 0.624 0.737 0.822 0.858 0.856 -0.011 -0.074 -0.187 -0.372 -0.527 -0.702

omom 0.507 0.575 0.669 0.763 0.805 0.824 0.007 0.045 0.120 0.262 0.393 0.557

jr 0.506 0.556 0.612 0.674 0.688 0.653 -0.005 -0.035 -0.089 -0.181 -0.252 -0.308

cash at 0.506 0.507 0.523 0.558 0.591 0.613 -0.007 -0.034 -0.073 -0.155 -0.255 -0.419

CMA 0.491 0.498 0.506 0.511 0.524 0.536 -0.001 -0.004 -0.010 -0.026 -0.049 -0.104

TERM 0.495 0.497 0.502 0.513 0.517 0.524 -0.001 -0.004 -0.011 -0.024 -0.043 -0.089

log price 0.501 0.515 0.512 0.496 0.504 0.505 0.008 0.037 0.064 0.104 0.161 0.282

defrisk 0.495 0.483 0.479 0.481 0.495 0.504 -0.001 0.005 0.025 0.072 0.133 0.252

SKEW 0.497 0.498 0.498 0.500 0.497 0.499 0.000 0.001 0.001 0.004 0.007 0.017

CPTL 0.496 0.492 0.497 0.496 0.504 0.492 0.001 0.006 0.015 0.035 0.063 0.113

Mom 0.501 0.501 0.498 0.498 0.499 0.487 -0.000 -0.000 -0.000 -0.000 -0.001 -0.001

LIQ 0.497 0.497 0.498 0.494 0.491 0.482 0.000 0.000 0.001 0.003 0.006 0.008

SKEWTS 0.495 0.495 0.494 0.493 0.489 0.478 -0.000 -0.000 -0.001 -0.002 -0.004 -0.012

ICRC 0.498 0.496 0.497 0.496 0.497 0.478 0.001 0.004 0.011 0.027 0.048 0.082

HML 0.494 0.493 0.492 0.489 0.489 0.474 -0.000 -0.002 -0.005 -0.012 -0.021 -0.036

EPU 0.492 0.491 0.495 0.498 0.488 0.470 -0.000 -0.002 -0.006 -0.014 -0.023 -0.041

RMW 0.491 0.492 0.495 0.490 0.482 0.468 -0.000 -0.001 -0.002 -0.005 -0.007 -0.009

DEF 0.496 0.494 0.494 0.483 0.478 0.463 -0.000 -0.001 -0.001 -0.004 -0.010 -0.024

Mkt-RF 0.495 0.492 0.497 0.495 0.488 0.463 0.001 0.007 0.017 0.040 0.064 0.092

SMB 0.495 0.494 0.488 0.486 0.478 0.458 0.000 0.001 0.001 -0.002 -0.008 -0.026

SENT 0.496 0.493 0.492 0.485 0.474 0.451 0.001 0.005 0.009 0.010 0.004 -0.017

UNCr 0.495 0.493 0.489 0.482 0.477 0.449 0.001 0.004 0.009 0.015 0.019 0.027

VIX 0.503 0.499 0.499 0.494 0.480 0.444 -0.002 -0.010 -0.024 -0.051 -0.076 -0.103

STLFSI 0.491 0.497 0.493 0.479 0.465 0.440 0.001 0.006 0.013 0.016 0.009 -0.012

ivol 0.491 0.482 0.473 0.468 0.457 0.437 -0.007 -0.021 -0.032 -0.063 -0.108 -0.188

UNC 0.495 0.494 0.493 0.480 0.466 0.436 0.001 0.005 0.010 0.013 0.010 -0.004

hvol 0.494 0.483 0.473 0.456 0.445 0.422 -0.005 -0.009 -0.007 -0.021 -0.057 -0.127

UNCf 0.492 0.491 0.480 0.470 0.453 0.415 -0.001 -0.003 -0.005 -0.010 -0.015 -0.025

VIXVOL 0.497 0.493 0.490 0.474 0.455 0.412 0.000 0.002 0.004 0.001 -0.008 -0.020

optspread 0.494 0.487 0.479 0.460 0.444 0.408 0.000 0.004 0.014 0.037 0.062 0.097

tskew 0.496 0.485 0.474 0.454 0.439 0.405 -0.001 0.002 0.013 0.039 0.068 0.108

amihud 0.495 0.489 0.464 0.445 0.428 0.404 -0.004 -0.011 -0.007 0.019 0.055 0.113

zscore 0.499 0.494 0.486 0.466 0.444 0.399 0.002 0.010 0.021 0.037 0.053 0.085

netis at 0.502 0.485 0.465 0.445 0.425 0.395 -0.005 -0.011 -0.008 0.010 0.042 0.108

sysvol 0.490 0.483 0.469 0.439 0.416 0.390 0.001 0.014 0.028 0.016 -0.029 -0.117

max10 0.500 0.483 0.472 0.453 0.435 0.386 -0.003 -0.001 0.014 0.026 0.024 0.022

embedlev 0.507 0.513 0.504 0.472 0.428 0.380 0.012 0.044 0.068 0.074 0.053 0.002

ivterm 0.499 0.502 0.494 0.470 0.438 0.375 -0.005 -0.023 -0.040 -0.054 -0.061 -0.070

iskew 0.497 0.491 0.477 0.453 0.426 0.372 -0.000 0.002 0.009 0.023 0.036 0.046

hc 0.504 0.502 0.477 0.442 0.412 0.368 -0.007 -0.025 -0.032 -0.023 -0.005 0.016

rsi 0.495 0.480 0.471 0.447 0.422 0.366 -0.001 -0.000 0.009 0.032 0.056 0.077

ocfq saleq std 0.507 0.522 0.522 0.504 0.454 0.365 -0.010 -0.044 -0.077 -0.110 -0.114 -0.090

ac 0.493 0.493 0.481 0.466 0.434 0.361 0.001 0.006 0.018 0.038 0.052 0.056

vov 0.496 0.496 0.485 0.459 0.426 0.361 -0.001 -0.007 -0.011 -0.012 -0.006 0.011

vr 0.505 0.514 0.504 0.474 0.430 0.353 -0.010 -0.038 -0.061 -0.076 -0.071 -0.049

ope be 0.499 0.518 0.508 0.483 0.437 0.351 0.010 0.039 0.066 0.087 0.083 0.047

ebit sale 0.506 0.523 0.513 0.473 0.422 0.338 0.010 0.042 0.069 0.077 0.055 0.005

issue 1y 0.497 0.479 0.461 0.433 0.400 0.326 -0.004 -0.009 -0.009 -0.008 -0.004 0.006

disp 0.496 0.481 0.467 0.430 0.398 0.325 -0.003 -0.006 -0.002 0.010 0.022 0.035

ew ret 0.490 0.466 0.446 0.402 0.371 0.316 -0.000 0.011 0.028 0.041 0.048 0.059

issue 5y 0.496 0.492 0.469 0.435 0.392 0.314 -0.006 -0.019 -0.026 -0.025 -0.017 0.001
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Table A2: Posterior factor inclusion probabilities and prices of risk - Puts.
This table lists posterior factor inclusion probabilities E[γj |data] and posterior prices of risk E[λj |data] for
each factor j. The continuous spike-and-slab BMA approach is detailed in Section 2. We employ non-
informative prior beliefs about factor inclusion, drawing factor inclusion probabilities from a Beta(1, 1)
distribution. Prior annualized Sharpe ratios range from 10% to 90% of the ex-post maximum achievable
Sharpe ratio. The factor set includes returns of 30 traded long-short factors based on delta-hedged put
returns as well as 21 non-traded factors from February 1997 to December 2021. Detailed descriptions of
the characteristics used for factor construction are documented in Internet Appendix IA1.1. Additional test
assets are 5× 5 long portfolios based on independent monthly sorts on ivrv and doi. Portfolio returns are
calculated with equal put option weighting.

Post. Factor Inclusion Probability Post. Price of Risk

Prior Sharpe Ratio (% of max) Prior Sharpe Ratio (% of max)

Factors: 10% 25% 40% 60% 75% 90% 10% 25% 40% 60% 75% 90%

ivrv 0.521 0.643 0.783 0.887 0.926 0.951 -0.012 -0.086 -0.231 -0.479 -0.696 -0.993

jr 0.507 0.566 0.643 0.729 0.755 0.725 -0.007 -0.046 -0.120 -0.249 -0.346 -0.413

omom 0.503 0.557 0.637 0.706 0.724 0.714 0.006 0.041 0.107 0.218 0.306 0.396

ivol 0.503 0.510 0.518 0.544 0.586 0.645 -0.011 -0.044 -0.082 -0.175 -0.311 -0.601

SKEW 0.497 0.499 0.497 0.498 0.500 0.503 0.000 0.001 0.003 0.006 0.011 0.026

SKEWTS 0.495 0.497 0.495 0.492 0.496 0.488 0.000 0.000 0.001 0.003 0.007 0.022

Mom 0.501 0.497 0.500 0.496 0.492 0.484 -0.000 -0.001 -0.003 -0.006 -0.011 -0.027

SENT 0.495 0.492 0.485 0.485 0.482 0.482 0.000 0.003 0.004 -0.000 -0.014 -0.050

cash at 0.505 0.504 0.507 0.511 0.511 0.482 -0.008 -0.033 -0.065 -0.121 -0.177 -0.246

TERM 0.493 0.496 0.496 0.491 0.485 0.477 -0.000 -0.002 -0.005 -0.009 -0.012 -0.018

CMA 0.491 0.490 0.491 0.494 0.486 0.477 -0.000 -0.001 -0.001 -0.003 -0.005 -0.001

HML 0.494 0.489 0.489 0.491 0.483 0.475 -0.000 -0.001 -0.003 -0.007 -0.014 -0.027

DEF 0.496 0.492 0.490 0.495 0.484 0.474 0.000 0.001 0.004 0.011 0.021 0.047

LIQ 0.495 0.497 0.501 0.494 0.485 0.469 -0.000 -0.001 -0.001 -0.002 -0.003 -0.007

RMW 0.491 0.489 0.496 0.491 0.486 0.465 -0.000 -0.001 -0.003 -0.007 -0.011 -0.008

UNC 0.495 0.495 0.492 0.484 0.482 0.459 0.000 0.000 -0.003 -0.014 -0.035 -0.080

Mkt-RF 0.495 0.492 0.493 0.487 0.478 0.458 0.001 0.006 0.016 0.034 0.055 0.093

ICRC 0.498 0.492 0.489 0.483 0.473 0.457 0.000 -0.000 -0.001 -0.006 -0.016 -0.055

UNCr 0.494 0.494 0.492 0.480 0.473 0.452 0.000 0.002 0.003 -0.000 -0.008 -0.028

VIX 0.502 0.503 0.503 0.492 0.484 0.451 -0.002 -0.013 -0.031 -0.061 -0.091 -0.142

CPTL 0.496 0.495 0.489 0.483 0.476 0.450 0.001 0.004 0.008 0.014 0.015 0.004

UNCf 0.494 0.497 0.500 0.502 0.488 0.446 -0.002 -0.013 -0.029 -0.059 -0.087 -0.119

EPU 0.493 0.494 0.492 0.484 0.473 0.444 -0.000 -0.002 -0.006 -0.012 -0.019 -0.029

SMB 0.494 0.493 0.491 0.485 0.475 0.442 0.000 0.003 0.007 0.014 0.020 0.021

embedlev 0.506 0.513 0.491 0.435 0.411 0.439 0.012 0.044 0.057 0.026 -0.040 -0.214

STLFSI 0.491 0.493 0.488 0.485 0.463 0.431 0.001 0.007 0.016 0.028 0.034 0.038

defrisk 0.496 0.488 0.468 0.455 0.446 0.412 -0.002 -0.002 0.010 0.043 0.082 0.135

hvol 0.502 0.491 0.479 0.460 0.444 0.409 -0.008 -0.021 -0.025 -0.037 -0.049 -0.036

VIXVOL 0.498 0.496 0.486 0.472 0.453 0.405 0.001 0.008 0.019 0.034 0.043 0.048

optspread 0.493 0.491 0.484 0.468 0.455 0.400 0.001 0.007 0.022 0.050 0.074 0.095

max10 0.498 0.480 0.465 0.447 0.425 0.383 -0.006 -0.011 -0.004 -0.007 -0.020 -0.036

zscore 0.499 0.490 0.489 0.466 0.441 0.383 0.002 0.011 0.025 0.043 0.060 0.082

log price 0.497 0.502 0.490 0.459 0.429 0.366 0.007 0.030 0.046 0.060 0.072 0.088

ebit sale 0.510 0.536 0.543 0.516 0.457 0.363 0.012 0.052 0.092 0.123 0.121 0.101

vov 0.497 0.498 0.492 0.467 0.433 0.361 -0.002 -0.009 -0.017 -0.022 -0.018 -0.006

hc 0.504 0.511 0.496 0.458 0.423 0.359 -0.008 -0.033 -0.049 -0.053 -0.053 -0.062

iskew 0.498 0.487 0.473 0.451 0.417 0.358 -0.001 -0.001 0.005 0.020 0.035 0.046

vr 0.506 0.535 0.529 0.495 0.447 0.358 -0.012 -0.050 -0.083 -0.105 -0.099 -0.067

ocfq saleq std 0.508 0.527 0.530 0.499 0.453 0.356 -0.011 -0.048 -0.083 -0.113 -0.115 -0.095

amihud 0.498 0.491 0.472 0.438 0.411 0.355 -0.005 -0.018 -0.021 -0.008 0.009 0.027

ope be 0.500 0.518 0.507 0.474 0.431 0.349 0.011 0.044 0.070 0.089 0.090 0.076

ivterm 0.499 0.504 0.496 0.456 0.413 0.342 -0.005 -0.022 -0.037 -0.038 -0.022 0.011

ac 0.494 0.486 0.474 0.449 0.410 0.340 -0.001 -0.001 0.001 0.007 0.012 0.014

issue 5y 0.493 0.492 0.480 0.450 0.417 0.340 -0.006 -0.021 -0.035 -0.053 -0.066 -0.074

netis at 0.503 0.488 0.469 0.439 0.402 0.340 -0.006 -0.018 -0.019 -0.013 0.002 0.017

sysvol 0.492 0.482 0.479 0.456 0.415 0.340 0.000 0.017 0.045 0.062 0.047 0.002

tskew 0.500 0.491 0.473 0.439 0.404 0.334 -0.002 -0.004 -0.001 0.009 0.018 0.021

rsi 0.499 0.504 0.498 0.469 0.430 0.332 -0.004 -0.020 -0.036 -0.053 -0.057 -0.043

issue 1y 0.497 0.480 0.464 0.430 0.393 0.321 -0.005 -0.011 -0.012 -0.015 -0.018 -0.020

disp 0.498 0.487 0.463 0.424 0.383 0.307 -0.004 -0.010 -0.008 0.002 0.012 0.020

ew ret 0.492 0.456 0.430 0.385 0.350 0.295 -0.003 0.001 0.012 0.022 0.029 0.032
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B Different estimation periods

(a) Estimation period: March 1997 to July 2009 (1st half of sample period)
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(b) Estimation period: August 2009 to December 2021 (2nd half of sample period)
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Fig. B1. Posterior factor inclusion probabilities for different estimation periods
- Calls.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2 for different estimation periods. Traded test assets are based on calls. Returns for estimation
over the first half of the sample period range from March 1997 to June 2006. Returns for estimation over
the second half of the sample period range from July 2006 to December 2021. All other specifications are
detailed in Figure 1.
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(a) Estimation period: March 1997 to July 2009 (1st half of sample period)
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(b) Estimation period: August 2009 to December 2021 (2nd half of sample period)
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Fig. B2. Posterior factor inclusion probabilities for different estimation periods
- Puts.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2 for different estimation periods. Traded test assets are based on puts. Returns for estimation
over the first half of the sample period range from March 1997 to June 2006. Returns for estimation over
the second half of the sample period range from July 2006 to December 2021. All other specifications are
detailed in Figure 2.
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C Results with transaction costs

(a) Calls
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(b) Puts
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Fig. C1. Ann. Sharpe ratios of factors before/after transaction costs.
Notes: This figure shows annualized Sharpe ratios of the factor set. Factors based on call options are shown
in (a) and factors based on put options in (b). The orange dots show the annualized Sharpe ratios of the
standard factors constructed from daily delta-hedged options held over the last full calendar month before
option maturity and transaction costs not considered. The blue dots show Sharpe ratios of factors where the
underlying options are held until maturity. The new options positions (and the portfolio sorts) are initiated
on the first Monday after the expiration of the old positions. The blue lines show Sharpe ratios for factors
with the same expiry-to-expiry holding periods, but subtracting 30% of the spread between option price and
option mid-price at position initiation as outlined in Section 5.1.
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(a) Calls
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(b) Puts
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Fig. C2. Posterior factor inclusion probabilities when accounting for
transaction costs.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2 for different estimation periods. To account for transaction cost, we calculate monthly option
returns from expiration to expiration and subtract 30% of the spread between the option price and the option
mid-price at position initiation as outlined in Section 5.1. Factor and test asset returns are then calculated
by equally weighting the option returns after transaction costs. Results for calls are shown in (a) and for
puts in (b). All other specifications are detailed in Figure 1.

58



Table C1: Cross-sectional pricing performance - Calls, accounting for
transaction costs.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Internet Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 42 factors
utilizes 21 traded and 21 non-traded factors. For the latter benchmark model, for the BMA-SDF estimation,
and for the out-of-sample test assets, we exclude factors with negative mean returns on the 5% significance
level using Newey & West (1987) standard errors accounting for autocorrelation up to lag 4. Out-of-sample
test assets are then 15 of the long-short factors detailed in Internet Appendix IA1.4.2 as well as 17 long
portfolios based on FF17 industry sorts. To account for transaction cost, we calculate monthly call option
returns from expiration to expiration and subtract 30% of the quoted half-spread at position initiation as
outlined in Section 5.1. Factor and test asset returns are then calculated by equally weighting the option
returns after transaction costs. RMSE and MAPE are based on returns standardized to an annual volatility
of 100%.

Panel A: In-Sample Pricing, Test Assets: 42 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.129 0.849 0.106 0.151 51 factors 0.096 0.06 0.993 0.968
25%-SRpr 0.922 0.691 0.383 0.204 CAPM 1.203 0.923 0.041 0.136
40%-SRpr 0.769 0.574 0.557 0.252 HVX 0.726 0.55 0.624 0.254
60%-SRpr 0.645 0.477 0.68 0.314 ZHCT 0.706 0.487 0.62 0.211
75%-SRpr 0.579 0.417 0.741 0.365 AN 0.901 0.75 0.514 0.277

90%-SRpr 0.525 0.368 0.788 0.427 TW 0.622 0.465 0.754 0.341

Panel B: Out-of-Sample Pricing, Test Assets: 15 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 0.808 0.638 0.138 -0.088 42 factors 1.697 1.351 -2.801 -5.392
25%-SRpr 0.645 0.479 0.45 0.015 CAPM 0.823 0.662 0.105 -0.136
40%-SRpr 0.553 0.406 0.596 0.092 HVX 0.576 0.439 0.562 0.093
60%-SRpr 0.506 0.37 0.663 0.157 ZHCT 0.607 0.434 0.513 0.108
75%-SRpr 0.49 0.365 0.683 0.19 AN 0.748 0.554 0.26 -0.18

90%-SRpr 0.483 0.367 0.692 0.204 TW 0.634 0.484 0.469 0.147
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Table C2: Cross-sectional pricing performance - Puts, accounting for
transaction costs.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 38 factors utilizes 17
traded and 21 non-traded factors. For the latter benchmark model, for the BMA-SDF estimation, and for
the out-of-sample test assets, we exclude factors with negative mean returns on the 5% significance level
using Newey & West (1987) standard errors accounting for autocorrelation up to lag 4. Out-of-sample test
assets are then 17 of the long-short factors detailed in Appendix IA1.4.2 as well as 17 long portfolios based
on FF17 industry sorts. To account for transaction cost, we calculate monthly put option returns from
expiration to expiration and subtract 30% of the quoted half-spread at position initiation as outlined in
Section 5.1. Factor and test asset returns are then calculated by equally weighting the call option returns
after transaction costs. RMSE and MAPE are based on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 38 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.518 1.235 0.139 0.218 51 factors 0.109 0.067 0.996 0.97
25%-SRpr 1.145 0.853 0.505 0.32 CAPM 1.64 1.333 -0.009 0.192
40%-SRpr 0.849 0.584 0.722 0.418 HVX 0.775 0.623 0.825 0.434
60%-SRpr 0.603 0.406 0.857 0.541 ZHCT 1.39 0.997 0.284 0.214
75%-SRpr 0.475 0.338 0.911 0.636 AN 1.301 1.037 0.335 0.243

90%-SRpr 0.369 0.277 0.947 0.724 TW 0.708 0.586 0.883 0.678

Panel B: Out-of-Sample Pricing, Test Assets: 17 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.293 1.036 0.151 0.356 38 factors 0.617 0.485 0.807 0.471
25%-SRpr 0.971 0.731 0.522 0.427 CAPM 1.397 1.142 0.01 0.343
40%-SRpr 0.762 0.554 0.706 0.476 HVX 0.79 0.601 0.684 0.319
60%-SRpr 0.632 0.466 0.798 0.526 ZHCT 1.087 0.845 0.4 0.403
75%-SRpr 0.573 0.428 0.833 0.568 AN 1.165 0.87 0.311 0.251

90%-SRpr 0.526 0.391 0.859 0.615 TW 0.688 0.566 0.76 0.562
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D Impact of retail investors

(a) Coverage calls
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(b) Coverage puts
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Fig. D1. Coverages (retail).
Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. We only construct factors for which we have signed exchange volume data as outlined in
Section 5.2. Traded test assets are based on calls and also constructed using options with signed volume
data coverage. The sample period is from June 2005 to March 2021. All other specifications are detailed in
Figure 1.
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(a) High retail

cash_at

ivrv

jr

log_price

omom

30%

40%

50%

60%

70%

80%

10% 25% 40% 60% 75% 90%

Prior Sharpe ratio (% of max)

P
os

te
ri

or
 p

ro
b
ab

il
it
y

ac

amihud

cash_at

CMA

CPTL

DEF

defrisk

disp

ebit_sale

embedlev

EPU

ew_ret

hc

HML

hvol

ICRC

iskew

issue_1y

issue_5y

ivol

ivrv

ivterm

jr

LIQ

log_price

max10

Mkt-RF

Mom

netis_at

ocfq_saleq_std

omom

ope_be

optspread

RMW

rsi

SENT

SKEW

SKEWTS

SMB

STLFSI

sysvol

TERM

tskew

UNC

UNCf

UNCr

VIX

VIXVOL

vov

vr

zscore

(b) Low retail
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Fig. D2. Retail - Calls.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2 for factors constructed based on call options with high or low retail activity. At the beginning
of each month, we sort calls based on the median of small customer volume over total non-market-maker
volume and construct factors and traded option test assets for both subsamples. Traded test assets are
based on calls. The sample period is from June 2005 to March 2021. All other specifications are detailed in
Figure 1.
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(a) High retail

DEF

hc

ivrv

jr

omom

30%

40%

50%

60%

70%

80%

10% 25% 40% 60% 75% 90%

Prior Sharpe ratio (% of max)

P
os

te
ri

or
 p

ro
b
ab

il
it
y

ac

amihud

cash_at

CMA

CPTL

DEF

defrisk

disp

ebit_sale

embedlev

EPU

ew_ret

hc

HML

hvol

ICRC

iskew

issue_1y

issue_5y

ivol

ivrv

ivterm

jr

LIQ

log_price

max10

Mkt-RF

Mom

netis_at

ocfq_saleq_std

omom

ope_be

optspread

RMW

rsi

SENT

SKEW

SKEWTS

SMB

STLFSI

sysvol

TERM

tskew

UNC

UNCf

UNCr

VIX

VIXVOL

vov

vr

zscore

(b) Low retail
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Fig. D3. Retail - Puts.

This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined in
Section 2 for factors constructed based on put options with high or low retail activity. At the beginning
of each month, we sort puts based on the median of small customer volume over total non-market-maker
volume and construct factors and traded option test assets for both subsamples. Traded test assets are
based on calls. The sample period is from June 2005 to March 2021. All other specifications are detailed in
Figure 2.
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Table D1: Cross-sectional pricing performance - Calls, retail split.
This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Internet Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors
utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors
detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. At the
beginning of each month, we sort puts based on the median of small customer volume over total non-market-
maker volume and construct factors and traded option test assets for both subsamples. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: High retail

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.379 1.041 0.145 0.046 51 factors 1.085 0.83 0.471 -0.735
25%-SRpr 1.088 0.808 0.467 0.198 CAPM 1.486 1.149 0.007 0.016
40%-SRpr 0.9 0.638 0.636 0.279 HVX 1 0.751 0.551 0.285
60%-SRpr 0.759 0.511 0.741 0.347 ZHCT 0.994 0.819 0.555 0.111
75%-SRpr 0.692 0.461 0.785 0.383 AN 1.506 1.208 -0.02 0.095
90%-SRpr 0.639 0.421 0.817 0.403 TW 1.146 0.907 0.409 -0.171

Panel B: Low retail

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.069 0.825 0.096 -0.098 51 factors 0.657 0.497 0.659 -0.115
25%-SRpr 0.911 0.709 0.344 0.044 CAPM 1.125 0.891 -0.001 -0.075
40%-SRpr 0.78 0.588 0.519 0.127 HVX 0.757 0.584 0.547 0.186
60%-SRpr 0.659 0.471 0.656 0.201 ZHCT 0.892 0.722 0.371 0.062
75%-SRpr 0.598 0.413 0.717 0.245 AN 1.13 0.809 -0.01 -0.338
90%-SRpr 0.556 0.376 0.756 0.281 TW 0.679 0.482 0.636 -0.083
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Table D2: Cross-sectional pricing performance - Puts, retail split.
This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Internet Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors
utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors
detailed in Internet Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. At the
beginning of each month, we sort puts based on the median of small customer volume over total non-market-
maker volume and construct factors and traded option test assets for both subsamples. RMSE and MAPE
are based on returns standardized to an annual volatility of 100%.

Panel A: High retail

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.5 1.041 0.144 -0.202 51 factors 0.708 0.544 0.81 -0.035
25%-SRpr 1.174 0.85 0.476 0.04 CAPM 1.606 1.173 0.019 -0.12
40%-SRpr 0.954 0.704 0.654 0.156 HVX 1.402 1.062 0.253 0.126
60%-SRpr 0.779 0.588 0.769 0.234 ZHCT 1.006 0.824 0.615 0.214
75%-SRpr 0.691 0.524 0.819 0.275 AN 1.564 1.072 0.071 -0.318
90%-SRpr 0.624 0.478 0.852 0.316 TW 1.334 0.886 0.324 -0.18

Panel B: Low retail

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.14 0.846 0.095 -0.409 51 factors 1.023 0.849 0.271 -1.007
25%-SRpr 0.97 0.743 0.344 -0.14 CAPM 1.196 0.915 0.003 -0.225
40%-SRpr 0.826 0.641 0.525 -0.005 HVX 1.051 0.833 0.231 0.004
60%-SRpr 0.685 0.53 0.673 0.1 ZHCT 0.92 0.786 0.411 0.198
75%-SRpr 0.608 0.471 0.742 0.155 AN 1.18 0.863 0.03 -1.344
90%-SRpr 0.551 0.426 0.788 0.201 TW 1.064 0.796 0.212 -0.571
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Internet Appendix

A Bayesian Stochastic Discount Factor for the Cross-Section of

Individual Equity Options

– Appendix IA1 describes the set of traded and non-traded factors in detail.

– Appendix IA2 describes the reduced-form option factor models used throughout the paper.

– Appendix IA3 replicates the main findings with alternative in-sample test assets.

– Appendix IA4 reports the main results when excluding the factors ivrv and omom from the analysis.

– Appendix IA5 reports the out-of-sample pricing performance separately for three different sets of test

assets.

– Appendix IA6 reports the main results when weighting options by their dollar-open interest and by

the market capitalization of the options’ underlying.

– Appendix IA7 reports the main results when using margin-adjusted option returns.

– Appendix IA8 reports the main results when using a more conservative prior belief on factor inclusion

probabilities.
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IA1 Traded and non-traded factors

IA1.1. Traded factors

IA1.1.1. Option factors

1. Embedded leverage (embedlev): The embedded leverage of the option contract following Frazzini &

Pedersen (2022) which has been also used in Büchner and Kelly (2022) for an option factor model for

S&P 500 index options.

2. Delta-hedging costs (hc): Delta hedging costs are calculated according to Tian & Wu (2023). Specif-

ically, delta-hedging costs, hct,i, at time−t on stock i are given as

hci,t = σt,i

√
(1− ρ2t,i)/DVt,i,

where σt,i denotes the stock’s historical return volatility estimator, ρt,i the return correlation of the

stock with the aggregate market portfolio, and DVt,i denotes the average dollar trading volume (in

thousands) on the stock.

3. Volatility risk (vr): Volatility risk, vrt,i, is calculated according to Tian & Wu (2023). It is the

standard deviation of daily changes of the stock i’s 1-month at-the-money option implied volatility

over the past month t.

4. Historical jump risk (jr): (Historical) jump risk follows Tian & Wu (2023) in its construction. It is

the product of stock’s excess kurtosis and historical return volatility over the past month.

5. Volatility of implied volatility (vov): Volatility of implied volatility is calculated following Ruan (2020)

as the standard deviation of 30-day at-the-money volatility scaled by the mean of 30-day at-the-money

volatility over the previous month.

6. Option illiquidity (optspread): Option illiquidity is measured as the option bid-ask spread following

Christoffersen et al. (2018).
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7. Option momentum (omom): Option momentum as the average stock-level option return over the past

year skipping the most recent month as in Heston et al. (2023) and Käfer et al. (2023).

8. Historical stock volatility (hvol): The historical volatility of stock returns measured over the past

month using daily data as in Hu & Jacobs (2020).

9. Systematic volatility (sysvol): The systematic volatility of the underlying stock’s returns. Following

Aretz et al. (2023), it is estimated as the square root of the annualized variance of the fitted value

from a time-series regression of the stock’s return on the Fama and French (2018) 6-factor model over

the past 24 months.

10. The term structure of implied at-the-money volatility (ivterm): The difference between short and

long term at-the-money implied volatility following Vasquez (2017). Following the implementation of

Goyal & Saretto (2024), we take the difference between 365 and 30-days to expiration at-the-money

implied volatility from the implied volatility surface of OptionMetrics. At-the-money implied volatility

is the average of the put and call implied volatility with an absolute delta of 0.5.

11. Stock return autocorrelation (ac): The autocorrelation of daily returns over the last 6 months requiring

at least 100 observations (Jeon et al., 2019).

12. Average of 10 highest past returns (max10): As in Byun & Kim (2016), the average of the 10 highest

daily returns over the last 3 months following Bali et al. (2011).

13. Default risk (defrisk): Following Vasquez & Xiao (2023), we calculate the default probability of the

underlying stock as in Bharath and Shumway (2008).

14. Idiosyncratic skewness (iskew): The third moment of the residuals from regressing the stock returns

on the market return and its square following Byun & Kim (2016).

15. Total skewness (tskew): The third moment of the residuals from regressing the stock returns on the

market return and its square following Byun & Kim (2016).

16. Idiosyncratic volatility (ivol): The idiosyncratic volatility of the underlying with respect to the Fama

& French (1993) 3-factor model over the past month as in Cao & Han (2013). The construction follows

Goyal & Saretto (2024).

3



17. Implied volatility minus realized volatility (ivrv): The difference between implied and realized volatil-

ity as in Goyal & Saretto (2009).

18. Stock illiquidity (amihud): Following and Zhan et al. (2022) and Kanne et al. (2023), we include the

Amihud (2002) illiquidity measure over the past month.

19. Short interest (rsi): The ratio between short interest (taken from Compustat’s Supplemental Short

Interest File (shortintadj )) and the total shares outstanding (Ramachandran & Tayal, 2021).

20. 1-year new stock issues (issue 1y): Following Zhan et al. (2022), we include the one-year change in

the log of the number of shares outstanding (Pontiff and Woodgate, 2008). The data is taken from

Jensen et al. (2023).

21. 5-year new stock issues (issue 5y): Following Zhan et al. (2022), we calculate the five-year change in

the log of the number of shares outstanding (Daniel and Titman, 2006).

22. Altman Z-score (zscore): Following Zhan et al. (2022), we include the Altman Z-score (Dichev, 1998).

The data is taken from Jensen et al. (2023).

23. Analyst dispersion (disp): Following Zhan et al. (2022), we include analyst earnings forecast dis-

persion computed as the standard deviation of analysts’ annual earnings-per-share forecasts over the

absolute value of the average forecast (Diether et al., 2002). The data is constructed using the repli-

cation code of Green et al. (2017).1

24. Cash-to-assets ratio (cash at): Following Zhan et al. (2022), we include the corporate cash holdings

over total assets (Palazzo, 2012). The data is taken from Jensen et al. (2023).

25. Cash flow volatility (ocfq saleq std): Following Zhan et al. (2022), we include the standard deviation

of quarterly reported operating cash flows over quarterly sales h09. The data is taken from Jensen et

al. (2023).

26. Operating profits-to-book equity (ope be): The operating profits-to-book equity ratio as in Fama &

French (2015). The data is taken from Jensen et al. (2023).

27. Profit margin (ebit sale): Following Zhan et al. (2022), we include the profit margin defined as

1https://sites.google.com/site/jeremiahrgreenacctg/home.
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EBIT over total sales (Soliman, 2008). The data is taken from Jensen et al. (2023).

28. Net total issuance (netis at): Net total issuance defined as total share and debt issuance minus cash

dividend payments as in Bradshaw et al. (2006). The data is taken from Jensen et al. (2023).

29. Stock price (log price): Following Zhan et al. (2022) and Boulatov et al. (2022), we take the log of

the underlying stock’s close price. The data is directly taken from CRSP.

30. The equal-weighted return of all option contracts (ew ret): As in Horenstein et al. (2022), we include

an equal-weighted return of all option contracts which is calculated as the mean of across all decile

portfolios across all above option factors.

IA1.1.2. Stock factors

1. Market risk premium (Mkt-RF): The market return in excess of the risk-free rate of the capital asset

pricing model (Sharpe, 1964; Lintner, 1965). The data is taken from Kenneth French’s website.

2. Stock value (SMB): The stock size factor following Fama & French (1992) and Fama & French (1993)

defined as the average return on the three (value, neutral, and growth) small portfolios minus the

average return on the three big portfolios. The data is taken from Kenneth French’s website.

3. Stock size (HML): The stock value factor following Fama & French (1992) and Fama & French (1993)

defined as the average return on the two (small and big) value, measured by the book-to-market ratio,

portfolios minus the average return on the two growth portfolios. The data is taken from Kenneth

French’s website.

4. Stock profitability (RMW): The stock profitability factor following Fama & French (2015) defined as the

average return on the two (small and big) robust operating profitability portfolios minus the average

return on the two weak operating profitability portfolios. The data is taken from Kenneth French’s

website.

5. Stock investment (CMA): The stock investment factor following Fama & French (2015) defined as the

average return on the two (small and big) conservative investment portfolios minus the average return

on the two aggressive investment portfolios. The data is taken from Kenneth French’s website.
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6. Stock momentum (Mom): The Carhart (1997) stock momentum factor following Fama & French (2015)

defined as the average return on the two (small and big) high prior return portfolios minus the average

return on the two low prior return portfolios. Prior returns are computed over the months t − 2 to

t− 12. The data is taken from Kenneth French’s website.

IA1.2. Non-traded factors

1. Intermediary capital nontraded risk (CPTL): The intermediary capital nontraded risk factor of He

et al. (2017). The data is downloaded from Zhiguo He’s website at https://voices.uchicago.edu/

zhiguohe/.

2. Economic policy uncertainty (EPU): The first difference in the economic policy uncertainty index. The

data is taken from FRED.

3. Macroeconomic uncertainty (UNC): The first difference in the macroeconomic uncertainty index lagged

by one month to align the forecast to the returns observed in month t. The data is taken from Sydney

Ludvigson’s website at https://www.sydneyludvigson.com/.

4. Financial economic uncertainty (UNCf): The first difference in the financial economic uncertainty

index lagged by one month to align the forecast to the returns observed in month t. The data is taken

from Sydney Ludvigson’s website at https://www.sydneyludvigson.com/.

5. Real economic uncertainty (UNCr): The first difference in the real economic uncertainty index lagged

by one month to align the forecast to the returns observed in month t. Data is taken from Sydney

Ludvigson’s website at https://www.sydneyludvigson.com/.

6. Volatility risk, VIX (VIX): The first difference in the CBOE VIX index. The data is downloaded from

https://www.cboe.com/tradable products/vix/vix historical data/.

7. Volatility-of-volatility risk, VIXVOL (VIXVOL): A range-based measure of the volatility of aggregate

volatility based on daily readings of the VIX index. The construction follows Agarwal et al. (2017).

8. Market tail risk (SKEW): The first difference in the CBOE SKEW index which estimates market tail
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risk. The data is downloaded from https://www.cboe.com/us/indices/dashboard/skew/.

9. SKEW term structure (SKEWTS): The first difference in the CBOE SKEW term structure. It is

the difference between 182d and 30d SKEW. Data downloaded from https://www.cboe.com/us/

indices/dashboard/skew/.

10. Correlation risk (ICRC): The payoff of monthly S&P 500 correlation swaps which is the difference

between the implied and realized correlation (Buraschi, Kosowski, & Trojani, 2014).

11. Aggregate liquidity risk (LIQ): The aggregate liquidity innovation factor of Pástor and Stambaugh

(2003). The data is downloaded from Robert Stambaugh’s website at https://finance.wharton

.upenn.edu/~stambaug/.

12. Sentiment (SENT): The sentiment index of Baker and Wurgler (2006) orthogonalized with respect to

macroeconomic variables. The data is obtained from Jeffrey Wurgler’s website at https://pages

.stern.nyu.edu/~jwurgler/.

13. Interest rate term structure (TERM): The slope of the term structure of interest rates. TERM is

calculated as the difference between U.S. Treasury Securities at 10-year constant maturity and 3-

month Treasury bill secondary market rates. The data is obtained from FRED.

14. Default spread (DEF): The default spread defined as the yield difference between Moody’s AAA and

BAA corporate bond yields. The data is taken from FRED.

15. Financial Stress (STLFSI): The St. Louis Fed Financial Stress Index. Data is obtained from FRED.

IA1.3. In-sample test assets

1. The long-short portfolios for all traded option factors described in Appendix IA1.1.1.

2. 5×5 long-only portfolios independently double-sorted on implied minus realized volatility (ivrv) and

dollar open interest (doi).
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IA1.4. Out-of-sample test assets

IA1.4.1. 17 Fama-French industry portfolios (FF17)

We construct long-only industry portfolios using the Fama-French 17 industry classification. The industry

definitions based on Compustat SIC codes are available on Kenneth French’s website. The coverage of the

industry return set is 100% for calls and 99.9% for puts. 6 missing monthly returns for industry 10, fabricated

products, are set to 0.

IA1.4.2. Remaining option anomalies proposed by Goyal & Saretto (2024)

We construct long-short portfolios for each of the option anomalies proposed by Goyal & Saretto (2024)

which are not part of our set of traded factors in Appendix IA1.1.1:

1. At-the-money implied volatility (atmiv): The average of put and call implied volatility with an

absolute delta of 0.5. The implied volatilities are extracted from the 30-day implied volatility surface

of OptionMetrics.

2. Debt to total assets (debt at): The firm’s leverage defined as total debt over total assets. The data

is taken from Jensen et al. (2023).

3. Market capitalization (mcap): The total market value of equity. The data is taken from Jensen et al.

(2023).

4. Financial debt (debt): The firm’s total book value of debt. The data is taken from Jensen et al.

(2023) using debt to total assets (debt at) and total assets (assets).

5. Net equity issuance (eqnetis at): Net equity issuance defined as total share issuance minus cash

dividend payments (Bradshaw et al., 2006). The data is taken from Jensen et al. (2023).

6. Risk-neutral volatility (rniv): The model-free implied volatility. We use the 30-day implied volatility

surface of OptionMetrics. The code is taken from Grigory Vilkov’s website.2

2https://www.vilkov.net/index.html.
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7. Realized skewness (skew): The skewness of daily log returns over the last 12 months requiring at least

150 observations.

8. Risk-neutral skewness (rns): The model-free implied skewness constructed from 30 days out-of-the-

money call and out-of-the-money put option prices as in Bakshi & Kapadia (2003). We use the 30-day

implied volatility surface of OptionMetrics. The code is taken from Grigory Vilkov’s website.

9. Realized skewness minus risk-neutral skewness (diff skew): The difference between skew and rns.

10. Realized kurtosis (kurtosis): The kurtosis of daily log returns over the last 12 months requiring at

least 150 observations.

11. Risk-neutral kurtosis (rnk): The model-free implied kurtosis constructed from 30 days out-of-the-

money call and out-of-the-money put option prices as in Bakshi & Kapadia (2003). We use the

30-day implied volatility surface of OptionMetrics. The code is taken from Grigory Vilkov’s website.

12. Realized kurtosis minus risk-neutral kurtosis (diff kurt): The difference between kurtosis and rnk.

13. Share turnover (turnover 126d): The total share turnover rate (trading volume over shares outstand-

ing) over the past 126 trading days (6 months) (Datar et al., 1998). The data is taken from Jensen

et al. (2023).

14. Total assets (assets): The firm’s total book value of assets. The data is taken from Jensen et al.

(2023).

15. Institutional ownership (inst): The institutional ownership in percentage derived from Thomson

Reuters 13f holdings.

16. Short-term stock return reversal (str): Short-term stock return reversal measured as the return in

month t− 1 (Jegadeesh, 1990). The data is taken from Jensen et al. (2023).

17. Stock return momentum (mom): Stock price momentum measured as return from month t−12 to t−1

(Jegadeesh and Titman, 1993). The data is taken from Jensen et al. (2023).

18. Book to market equity (be me): The book-to-market ratio computed as the book value of equity over

the current market value of equity. The data is taken from Jensen et al. (2023).

19. Profitability (gp at): The ratio of gross profits to total assets (Novy-Marx, 2013). The data is taken

9



from Jensen et al. (2023).

20. Option dollar volume (odvol): The option volume multiplied by the option’s mid price. The data is

directly taken from OptionMetrics.

21. Option dollar open interest (doi): The option open interest (number of contracts) multiplied by the

option’s mid price. The data is directly taken from OptionMetrics.

22. Option contract’s implied volatility (iv): The implied volatility of the option contract. The data is

directly taken from OptionMetrics.

23. Implied volatility slope (ivslope): The difference between the implied volatilities of out-of-the-money

puts and at-the-money calls (Xing et al., 2010). The data is directly taken from OptionMetrics.

24. Moneyness (moneyness): The moneyness of the option contract defined as the strike-to-spot ratio.

The data is directly taken from OptionMetrics and CRSP.

25. Option contract’s mid price (mid): The mid price of the option contract. The data is directly taken

from OptionMetrics.

26. Option delta (delta): The delta of the option contract. The data is directly taken from OptionMetrics.
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IA2 Benchmark factor models

We consider five benchmark option factor models. Each model is separately constructed for call and put

options using our daily delta-hedging return definition and option filters detailed in Section 3.

Option market portfolio, CAPM: Analogous to the equity market, we construct an option

market portfolio and use it for a one-factor model. We approximate the market factor using ew ret.

Horenstein et al. (2022), HVX: Horenstein et al. (2022) adopt the methodology of Lettau and

Pelger (2020) and apply it to single-name options. Their identified latent factors are captured by three

tradable option factors: an equal-weighted option portfolio, the long-short factor based on the difference in

implied and realized volatility, and the long-short factor based on the volatility of implied volatility. We

approximate their factors using ew ret, ivrv, and vov.

Zhan et al. (2022), ZHCT: Zhan et al. (2022) show that two factors, the underlying’s illiquidity

and idiosyncratic volatility, can price 9 out of 10 stock-based characteristics in the options market. We

approximate their factors using amihud, and ivol.

Tian & Wu (2023), TW: Tian & Wu (2023) propose a five-factor model to price the cross-section

of option returns. The first three factors are deemed as primary risks of option market makers: delta-

hedging costs, volatility risk, and jump risk. These three factors are augmented by a historical risk premium

(captured by option momentum) and a volatility risk premium (captured by the difference between implied

and realized volatility). We approximate their factors using hc, vr, jr, omon, and ivrv.

Agarwal & Naik (2004), AN: Agarwal & Naik (2004) construct S&P 500 index option-based risk

factors using at-the-money and out-of-the-money option contracts for calls and puts, respectively. Although
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the option-based risk factors are constructed using index options, they have also been frequently used for

single-name options. Hence, we include them as a benchmark model.
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IA3 Alternative in-sample test assets
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Fig. IA3.1. Posterior factor inclusion probabilities for alternative in-sample test
assets.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. We replace the 25 portfolios based on double sorts on ivrv and doi with 25 portfolios based on
double sorts on be me and mcap. Results for calls are shown in (a) and for puts in (b). All other specifications
are detailed in Figure 1.
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Table IA3.1: Cross-sectional pricing performance - Calls, alternative in-sample
test assets.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2, but replacing the 25
in-sample test assets based on double sorts on ivrv and doi with 25 portfolios based on double sorts on
be me and mcap. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk
prices. Benchmark models are described in Appendix IA2. CAPM refers to a one-factor model utilizing only
ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets are
the 26 long-short factors detailed in Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry
sorts. Portfolio returns are calculated with equal call option weighting. RMSE and MAPE are based on
returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.232 0.829 0.132 0.05 51 factors 0.031 0.018 0.999 0.989
25%-SRpr 0.981 0.656 0.417 0.159 CAPM 1.304 0.914 0.013 0.015
40%-SRpr 0.788 0.521 0.623 0.282 HVX 0.978 0.692 0.442 0.29
60%-SRpr 0.563 0.364 0.808 0.439 ZHCT 1.07 0.813 0.366 0.074
75%-SRpr 0.422 0.284 0.892 0.545 AN 1.179 0.91 0.159 0.081
90%-SRpr 0.298 0.226 0.946 0.653 TW 1.137 0.909 0.425 0.415

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.407 0.933 0.153 0.008 51 factors 0.756 0.521 0.755 -0.141
25%-SRpr 1.133 0.772 0.45 0.137 CAPM 1.486 1.015 0.054 -0.005
40%-SRpr 0.95 0.639 0.613 0.227 HVX 1.025 0.863 0.55 0.303
60%-SRpr 0.781 0.502 0.739 0.318 ZHCT 1.074 0.824 0.506 0.041
75%-SRpr 0.69 0.427 0.796 0.366 AN 1.327 1.078 0.246 0.083
90%-SRpr 0.611 0.38 0.84 0.411 TW 1.147 0.872 0.437 0.02
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Table IA3.2: Cross-sectional pricing performance - Puts, alternative in-sample
test assets.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2, but replacing the 25
in-sample test assets based on double sorts on ivrv and doi with 25 portfolios based on double sorts on
be me and mcap. For the benchmark models, we use GMM with a GLS weighting matrix to estimate risk
prices. Benchmark models are described in Appendix IA2. CAPM refers to a one-factor model utilizing only
ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded factors. Out-of-sample test assets are
the 26 long-short factors detailed in Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry
sorts. Portfolio returns are calculated with equal put option weighting. RMSE and MAPE are based on
returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.428 1.033 0.135 0.045 51 factors 0.038 0.021 0.999 0.988
25%-SRpr 1.103 0.738 0.432 0.163 CAPM 1.479 1.086 -0.006 0.009
40%-SRpr 0.87 0.563 0.636 0.288 HVX 1.361 0.993 0.151 0.259
60%-SRpr 0.621 0.406 0.815 0.441 ZHCT 1.077 0.736 0.444 0.11
75%-SRpr 0.469 0.324 0.896 0.536 AN 1.483 1.086 0.042 0.077
90%-SRpr 0.343 0.257 0.946 0.625 TW 1.366 1.099 0.369 0.387

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.324 0.919 0.171 -0.27 51 factors 0.979 0.744 0.547 -1.551
25%-SRpr 1.016 0.741 0.512 0.013 CAPM 1.403 1 0.069 -0.135
40%-SRpr 0.808 0.611 0.691 0.179 HVX 1.371 1.115 0.111 0.236
60%-SRpr 0.614 0.462 0.822 0.326 ZHCT 0.885 0.733 0.629 0.119
75%-SRpr 0.508 0.38 0.878 0.406 AN 1.442 1.069 0.017 -0.091
90%-SRpr 0.425 0.32 0.914 0.474 TW 1.225 0.933 0.29 -0.108
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IA4 Estimation without ivrv and omom
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(b) Puts
jr

30%

40%

50%

60%

70%

80%

10% 25% 40% 60% 75% 90%

Prior Sharpe ratio (% of max)

P
os

te
ri

or
 p

ro
b
ab

il
it

y

ac

amihud

cash_at

CMA

CPTL

DEF

defrisk

disp

ebit_sale

embedlev

EPU

ew_ret

hc

HML

hvol

ICRC

iskew

issue_1y

issue_5y

ivol

ivterm

jr

LIQ

log_price

max10

Mkt-RF

Mom

netis_at

ocfq_saleq_std

ope_be

optspread

RMW

rsi

SENT

SKEW

SKEWTS

SMB

STLFSI

sysvol

TERM

tskew

UNC

UNCf

UNCr

VIX

VIXVOL

vov

vr

zscore

Fig. IA4.1. Posterior factor inclusion probabilities excluding ivrv and omom.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. The factors based on the spread between option-implied and realized volatility (ivrv) as well as
on the options’ past returns (omom) are not considered in the factor set or as test assets. Results for calls
are shown in (a) and for puts in (b). All other specifications are detailed in Figure 1.
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IA5 Additional out-of-sample test assets

Table IA5.1: Out-of-sample pricing performance - Calls, additional test assets.
This table reports four performance measures of cross-sectional out-of-sample pricing for different factor
models and three different sets of test assets. For the BMA-SDF, prices of risk are estimated using the
methodology outlined in Section 2 and reported in Table A1. For the benchmark models, we use GMM with
a GLS weighting matrix to estimate risk prices. Benchmark models are described in Appendix IA2. CAPM
refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded
factors. In Panel A, the out-of-sample test assets are 17 long portfolios based on FF17 industry sorts. In
Panel B, the test assets are the 26 long-short factors detailed in Appendix IA1.4.2. In Panel C, the test
assets are 25 long portfolios based on independent 5× 5 portfolio sorts on the book-to-market ratio (be me)
and the market capitalization (mcap) of the options’ underlying stocks. Portfolio returns are calculated with
equal call option weighting. RMSE and MAPE are based on returns standardized to an annual volatility of
100%.

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

Panel A: Out-of-Sample Pricing, Test Assets: 17 Industry Portfolios
10%-SRpr 0.359 0.222 0.101 0.077 51 factors 0.936 0.795 -5.113 -4.921
25%-SRpr 0.309 0.205 0.331 0.258 CAPM 0.375 0.229 0.018 0.011
40%-SRpr 0.263 0.19 0.517 0.401 HVX 0.382 0.271 -0.018 -0.085
60%-SRpr 0.216 0.168 0.675 0.51 ZHCT 0.358 0.253 0.104 0.129
75%-SRpr 0.2 0.16 0.722 0.533 AN 0.406 0.306 -0.153 -0.234
90%-SRpr 0.2 0.158 0.719 0.516 TW 0.391 0.304 -0.065 -0.062

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors
10%-SRpr 1.786 1.404 0.151 0.012 51 factors 1.741 1.328 0.194 -1.851
25%-SRpr 1.428 1.107 0.458 0.144 CAPM 1.893 1.51 0.047 -0.037
40%-SRpr 1.184 0.897 0.627 0.263 HVX 1.272 1.164 0.57 0.248
60%-SRpr 0.972 0.695 0.749 0.39 ZHCT 1.294 1.014 0.555 0.022
75%-SRpr 0.862 0.593 0.802 0.462 AN 1.533 1.344 0.375 0.104
90%-SRpr 0.78 0.528 0.838 0.521 TW 1.45 1.26 0.441 0.099

Panel C: Out-of-Sample Pricing, Test Assets: 25 BM-MCAP portfolios
10%-SRpr 0.388 0.272 0.163 0.103 51 factors 0.587 0.497 -0.914 -5.73
25%-SRpr 0.291 0.182 0.531 0.316 CAPM 0.43 0.31 -0.025 0.012
40%-SRpr 0.216 0.134 0.741 0.492 HVX 0.373 0.304 0.227 0.307
60%-SRpr 0.163 0.11 0.852 0.625 ZHCT 0.29 0.193 0.534 0.153
75%-SRpr 0.149 0.108 0.877 0.662 AN 0.4 0.287 0.112 -0.06
90%-SRpr 0.147 0.117 0.88 0.661 TW 0.381 0.307 0.196 0.337
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Table IA5.2: Out-of-sample pricing performance - Puts, additional test assets.
This table reports four performance measures of cross-sectional out-of-sample pricing for different factor
models and three different sets of test assets. For the BMA-SDF, prices of risk are estimated using the
methodology outlined in Section 2 and reported in Table A2. For the benchmark models, we use GMM with
a GLS weighting matrix to estimate risk prices. Benchmark models are described in Appendix IA2. CAPM
refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes all 30 traded and 21 non-traded
factors. In Panel A, the out-of-sample test assets are 17 long portfolios based on FF17 industry sorts. In
Panel B, the test assets are the 26 long-short factors detailed in Appendix IA1.4.2. In Panel C, the test
assets are 25 long portfolios based on independent 5× 5 portfolio sorts on the book-to-market ratio (be me)
and the market capitalization (mcap) of the options’ underlying stocks. Portfolio returns are calculated with
equal put option weighting. RMSE and MAPE are based on returns standardized to an annual volatility of
100%.

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

Panel A: Out-of-Sample Pricing, Test Assets: 17 Industry Portfolios
10%-SRpr 0.364 0.246 0.063 0.099 51 factors 0.824 0.652 -3.805 -4.9
25%-SRpr 0.332 0.237 0.22 0.255 CAPM 0.37 0.246 0.03 0.037
40%-SRpr 0.293 0.219 0.392 0.411 HVX 0.428 0.297 -0.295 -0.105
60%-SRpr 0.245 0.191 0.577 0.557 ZHCT 0.415 0.296 -0.219 0.027
75%-SRpr 0.221 0.171 0.654 0.609 AN 0.429 0.321 -0.3 -0.161
90%-SRpr 0.209 0.165 0.691 0.633 TW 0.434 0.321 -0.334 -0.035

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors
10%-SRpr 1.678 1.352 0.173 -0.264 51 factors 1.852 1.549 -0.007 -2.471
25%-SRpr 1.267 1.036 0.529 -0.059 CAPM 1.76 1.422 0.09 -0.314
40%-SRpr 0.983 0.816 0.716 0.121 HVX 1.695 1.484 0.156 0.029
60%-SRpr 0.735 0.605 0.841 0.308 ZHCT 0.978 0.829 0.719 -0.176
75%-SRpr 0.606 0.488 0.892 0.413 AN 1.773 1.431 0.077 -0.096
90%-SRpr 0.513 0.413 0.923 0.497 TW 1.537 1.337 0.306 -0.046

Panel C: Out-of-Sample Pricing, Test Assets: 25 BM-MCAP portfolios
10%-SRpr 0.441 0.311 0.152 0.136 51 factors 1.007 0.853 -3.426 -11.584
25%-SRpr 0.339 0.224 0.499 0.299 CAPM 0.495 0.359 -0.07 0.023
40%-SRpr 0.264 0.183 0.696 0.427 HVX 0.52 0.428 -0.178 0.041
60%-SRpr 0.209 0.156 0.809 0.511 ZHCT 0.309 0.225 0.582 0.208
75%-SRpr 0.192 0.147 0.839 0.519 AN 0.503 0.38 -0.103 0.064
90%-SRpr 0.189 0.147 0.844 0.49 TW 0.44 0.357 0.155 0.185



IA6 Value-weighted returns

In the main analyses, we consider equal-weighted portfolios. In the following, we consider two alternative

portfolio weighting schemes. In Figure IA6.1 and Tables IA6.1 and IA6.2, we weigh options by their respective

dollar-open interest. Similar to Jensen et al. (2023), we limit the impact of options with extremely high dollar-

open interest by winsorizing (capping) the dollar-open interest at the monthly 80% percentile. In doing so,

the weight on options with very little open interest remains minimal, while no single option can dominate

the long or short legs of factors. In Figure IA6.2 and Tables IA6.3 and IA6.4, we use the stock market

capitalization of the options’ underlying for weighting, also winsorized at the monthly 80% percentile.
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(b) Puts
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Fig. IA6.1. Posterior factor inclusion probabilities with dollar-open interest
weighting.

Notes: Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach
outlined in Section 2. Results for calls are shown in (a) and for puts in (b). Portfolios are constructed by
weighting options by their capped dollar-open interest. All other specifications are detailed in Figure 1.
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Table IA6.1: Cross-sectional pricing performance - Calls, dollar-open interest
weighting.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
by weighting call options by their capped dollar-open interest. RMSE and MAPE are based on returns
standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 0.975 0.78 0.097 0.034 51 factors 0.115 0.064 0.988 0.884
25%-SRpr 0.806 0.64 0.349 0.103 CAPM 1.003 0.852 -0.023 0.021
40%-SRpr 0.684 0.54 0.524 0.169 HVX 0.571 0.467 0.677 0.151
60%-SRpr 0.578 0.455 0.662 0.248 ZHCT 0.736 0.57 0.453 0.075
75%-SRpr 0.522 0.409 0.727 0.309 AN 0.941 0.823 0.114 0.128
90%-SRpr 0.471 0.37 0.779 0.383 TW 0.539 0.389 0.754 0.198

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 0.897 0.649 0.134 -0.147 51 factors 0.935 0.738 0.057 -2.134
25%-SRpr 0.718 0.52 0.445 0.095 CAPM 0.881 0.643 0.163 0.004
40%-SRpr 0.594 0.439 0.62 0.242 HVX 0.503 0.378 0.728 0.368
60%-SRpr 0.499 0.379 0.732 0.359 ZHCT 0.578 0.433 0.64 0.145
75%-SRpr 0.453 0.35 0.779 0.417 AN 0.829 0.646 0.26 -0.035
90%-SRpr 0.422 0.331 0.808 0.451 TW 0.503 0.393 0.728 0.141
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Table IA6.2: Cross-sectional pricing performance - Puts, dollar-open interest
weighting.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
by weighting put options by their capped dollar-open interest. RMSE and MAPE are based on returns
standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.042 0.833 0.107 0.03 51 factors 0.079 0.044 0.995 0.968
25%-SRpr 0.831 0.661 0.372 0.101 CAPM 1.021 0.899 -0.014 0.021
40%-SRpr 0.696 0.556 0.538 0.157 HVX 0.733 0.612 0.475 0.104
60%-SRpr 0.592 0.466 0.66 0.213 ZHCT 0.643 0.482 0.597 0.112
75%-SRpr 0.541 0.421 0.714 0.252 AN 0.991 0.807 0.126 0.121
90%-SRpr 0.504 0.389 0.752 0.297 TW 0.612 0.444 0.712 0.197

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 0.92 0.681 0.125 -0.203 51 factors 2.62 2.088 -6.098 -21.276
25%-SRpr 0.746 0.56 0.425 0.079 CAPM 0.884 0.648 0.191 0.012
40%-SRpr 0.626 0.473 0.595 0.24 HVX 0.7 0.518 0.493 0.268
60%-SRpr 0.533 0.404 0.707 0.356 ZHCT 0.563 0.438 0.672 0.187
75%-SRpr 0.491 0.374 0.751 0.411 AN 0.941 0.701 0.085 -0.023
90%-SRpr 0.47 0.361 0.772 0.449 TW 0.587 0.457 0.644 0.22
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(b) Puts
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Fig. IA6.2. Posterior factor inclusion probabilities with market-capitalization
weighting.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. Results for calls are shown in (a) and for puts in (b). Portfolios are constructed by weighting
options by the capped market capitalization of their underlying stocks. All other specifications are detailed
in Figure 1.

23



Table IA6.3: Cross-sectional pricing performance - Calls, market capitalization
weighting.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
by weighting call options by the underlyings’ capped market capitalization. RMSE and MAPE are based on
returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.005 0.77 0.054 0.014 51 factors 0.046 0.027 0.998 0.968
25%-SRpr 0.894 0.68 0.231 0.085 CAPM 1.034 0.801 -0.004 0.002
40%-SRpr 0.771 0.6 0.425 0.177 HVX 0.734 0.554 0.489 0.211
60%-SRpr 0.611 0.488 0.639 0.298 ZHCT 0.91 0.713 0.263 0.058
75%-SRpr 0.508 0.414 0.75 0.375 AN 0.901 0.692 0.229 0.077
90%-SRpr 0.431 0.358 0.82 0.435 TW 0.857 0.683 0.428 0.333

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.017 0.661 0.071 -0.027 51 factors 1.524 1.17 -1.086 -7.292
25%-SRpr 0.908 0.606 0.26 0.08 CAPM 1.042 0.687 0.026 -0.018
40%-SRpr 0.806 0.548 0.417 0.177 HVX 0.82 0.674 0.396 0.317
60%-SRpr 0.691 0.471 0.571 0.286 ZHCT 0.794 0.633 0.434 0.065
75%-SRpr 0.624 0.421 0.65 0.347 AN 0.964 0.677 0.165 0.055
90%-SRpr 0.576 0.386 0.702 0.389 TW 0.926 0.694 0.23 0.101
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Table IA6.4: Cross-sectional pricing performance - Puts, market capitalization
weighting.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
by weighting put options by their underlyings’ capped market capitalization. RMSE and MAPE are based
on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.102 0.834 0.076 0.03 51 factors 0.086 0.046 0.994 0.91
25%-SRpr 0.932 0.697 0.299 0.136 CAPM 1.124 0.878 -0.015 0.004
40%-SRpr 0.762 0.574 0.523 0.269 HVX 0.92 0.705 0.319 0.234
60%-SRpr 0.554 0.422 0.747 0.427 ZHCT 0.859 0.632 0.392 0.116
75%-SRpr 0.424 0.332 0.851 0.518 AN 1.022 0.803 0.168 0.043
90%-SRpr 0.325 0.266 0.912 0.59 TW 0.925 0.76 0.481 0.408

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 0.903 0.615 0.106 -0.213 51 factors 1.107 0.846 -0.344 -2.727
25%-SRpr 0.765 0.55 0.357 0.006 CAPM 0.952 0.681 0.005 -0.116
40%-SRpr 0.642 0.486 0.547 0.163 HVX 0.977 0.786 -0.048 0.138
60%-SRpr 0.51 0.398 0.715 0.303 ZHCT 0.626 0.528 0.57 0.11
75%-SRpr 0.436 0.347 0.792 0.373 AN 0.91 0.671 0.091 -0.141
90%-SRpr 0.386 0.313 0.837 0.419 TW 0.83 0.63 0.244 -0.064
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IA7 Margin-adjusted returns

Definition of margin-adjusted returns

In the main analyses, we scale the delta-hedged portfolio gain by the cash requirement to enter into a delta-

hedged option position. In the following, we change the return definition to incorporate margin requirements

following Bali et al. (2023). Precisely, we change equation (6) to

rt,t+τ =
Π(t, t+ τ)

Mt
,

where Mt > 0 denotes the margin requirement for sustaining a delta-hedged option position from t to

t + τ . For the exact margin requirements, we adopt the CBOE minimum margin for customer accounts.3

Also assuming a 50% margin requirement for long and short positions in the underlying stock, the margin

requirement is given as

Mt =


Ot + 0.5|∆t|St, for hedged long positions

Ot +max(0.1St, 0.2St −max(0,K − St)) + 0.5|∆t|St, for hedged short calls

0.1K + 0.5|∆t|St, for hedged short puts

where K denotes the strike price, Ot the option price, and St is the price of the underlying stock.

3See https://www.cboe.com/us/options/strategy based margin.
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Fig. IA7.1. Posterior factor inclusion probabilities with margin-adjusted
returns.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. Test asset returns are calculated by equally-weighting margin-adjusted returns. Results for
calls are shown in (a) and for puts in (b). All other specifications are detailed in Figure 1.
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Table IA7.1: Cross-sectional pricing performance - Calls, margin-adjusted
returns.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
with equal call option weighting and margin-adjusted returns. RMSE and MAPE are based on returns
standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.152 0.861 0.049 0.026 51 factors 0.046 0.023 0.998 0.98
25%-SRpr 0.974 0.723 0.261 0.126 CAPM 1.242 0.968 0.067 0.002
40%-SRpr 0.799 0.592 0.493 0.246 HVX 0.999 0.75 0.425 0.237
60%-SRpr 0.613 0.462 0.705 0.391 ZHCT 1.074 0.786 0.095 0.033
75%-SRpr 0.494 0.378 0.809 0.493 AN 1.183 1.027 0.436 0.12
90%-SRpr 0.367 0.283 0.894 0.604 TW 1.529 1.326 -0.378 0.174

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.047 0.843 0.059 -0.058 51 factors 1.181 0.865 -0.196 -3.235
25%-SRpr 0.922 0.727 0.271 0.088 CAPM 1.05 0.846 0.053 -0.167
40%-SRpr 0.788 0.609 0.467 0.204 HVX 0.773 0.621 0.487 0.142
60%-SRpr 0.663 0.505 0.623 0.3 ZHCT 0.93 0.721 0.257 0.034
75%-SRpr 0.598 0.448 0.693 0.343 AN 0.81 0.608 0.437 -0.193

90%-SRpr 0.544 0.398 0.746 0.371 TW 1.14 0.956 -0.116 0.1
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Table IA7.2: Cross-sectional pricing performance - Puts, margin-adjusted
returns.

This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed in
Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are calculated
with equal put option weighting and margin-adjusted returns. RMSE and MAPE are based on returns
standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.487 1.16 0.183 0.045 51 factors 0.032 0.017 1 0.99
25%-SRpr 1.173 0.884 0.489 0.14 CAPM 1.54 1.231 0.293 0.016
40%-SRpr 0.952 0.695 0.647 0.235 HVX 1.144 0.831 0.579 0.243
60%-SRpr 0.715 0.525 0.789 0.355 ZHCT 1.1 0.785 0.51 0.106
75%-SRpr 0.561 0.42 0.867 0.44 AN 1.509 1.144 0.217 0.079
90%-SRpr 0.42 0.329 0.924 0.533 TW 1.211 1.032 0.331 0.341

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.154 0.973 0.213 -0.183 51 factors 2.439 1.759 -2.515 -12.93
25%-SRpr 0.854 0.717 0.569 0.029 CAPM 1.086 0.919 0.303 -0.425
40%-SRpr 0.688 0.574 0.721 0.19 HVX 0.915 0.723 0.506 -0.079
60%-SRpr 0.546 0.445 0.824 0.338 ZHCT 0.694 0.546 0.715 0.073
75%-SRpr 0.461 0.365 0.874 0.415 AN 1.197 1.012 0.154 -0.32
90%-SRpr 0.395 0.304 0.908 0.482 TW 1.059 0.924 0.338 0.269
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IA8 Conservative prior beliefs on factor inclusion
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Fig. IA8.1. Posterior factor inclusion probabilities for more conservative prior
beliefs on factor inclusion.

Notes: This figure shows posterior factor probabilities E[γj |data] estimated with the BMA approach outlined
in Section 2. More conservative prior beliefs on factor inclusion are employed by initially drawing factor
inclusion probabilities from a Beta(3, 12) distribution. Results for calls are shown in (a) and for puts in (b).
All other specifications are detailed in Figure 1.
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Table IA8.1: Cross-sectional pricing performance - Calls, Beta(3,12).
This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed
in Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are
calculated with equal call option weighting. Initial factor inclusion probabilities are drawn from a Beta(3, 12)
distribution. RMSE and MAPE are based on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.407 1.076 0.053 0.041 51 factors 0.078 0.042 0.997 0.934
25%-SRpr 1.238 0.946 0.234 0.101 CAPM 1.421 1.104 0.008 0.028
40%-SRpr 1.057 0.814 0.433 0.189 HVX 0.971 0.686 0.536 0.265
60%-SRpr 0.807 0.624 0.669 0.323 ZHCT 1.217 0.963 0.307 0.077
75%-SRpr 0.643 0.498 0.79 0.408 AN 1.225 1.031 0.237 0.13
90%-SRpr 0.528 0.418 0.858 0.471 TW 1.13 0.888 0.513 0.375

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.473 0.977 0.07 -0.029 51 factors 1.534 1.113 -0.007 -3.914
25%-SRpr 1.286 0.866 0.291 0.074 CAPM 1.491 1.012 0.048 -0.011
40%-SRpr 1.106 0.761 0.476 0.168 HVX 1.029 0.863 0.546 0.298
60%-SRpr 0.908 0.625 0.647 0.278 ZHCT 1.078 0.825 0.502 0.044
75%-SRpr 0.796 0.539 0.728 0.336 AN 1.249 1.007 0.332 0.057
90%-SRpr 0.724 0.48 0.776 0.372 TW 1.155 0.877 0.429 0.009
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Table IA8.2: Cross-sectional pricing performance - Puts, Beta(3,12).
This table reports four performance measures of cross-sectional pricing for different factor models. For the
BMA-SDF, prices of risk are estimated using the methodology outlined in Section 2. For the benchmark
models, we use GMM with a GLS weighting matrix to estimate risk prices. Benchmark models are described
in Appendix IA2. CAPM refers to a one-factor model utilizing only ew ret, whereas 51 factors utilizes
all 30 traded and 21 non-traded factors. Out-of-sample test assets are the 26 long-short factors detailed
in Appendix IA1.4.2 as well as 17 long portfolios based on FF17 industry sorts. Portfolio returns are
calculated with equal put option weighting. Initial factor inclusion probabilities are drawn from a Beta(3, 12)
distribution. RMSE and MAPE are based on returns standardized to an annual volatility of 100%.

Panel A: In-Sample Pricing, Test Assets: 51 Factors and 25 IVRV-DOI portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.591 1.239 0.053 0.025 51 factors 0.035 0.02 0.999 0.988
25%-SRpr 1.38 1.066 0.24 0.098 CAPM 1.568 1.247 -0.008 0.011
40%-SRpr 1.157 0.885 0.444 0.203 HVX 1.346 0.97 0.268 0.252
60%-SRpr 0.871 0.657 0.68 0.356 ZHCT 1.229 0.919 0.362 0.108
75%-SRpr 0.688 0.526 0.799 0.449 AN 1.508 1.153 0.104 0.072
90%-SRpr 0.565 0.44 0.863 0.511 TW 1.36 1.081 0.444 0.376

Panel B: Out-of-Sample Pricing, Test Assets: 26 Factors and 17 Industry Portfolios

BMA-SDF RMSE MAPE R2
ols R2

gls Model RMSE MAPE R2
ols R2

gls

10%-SRpr 1.396 0.958 0.078 -0.344 51 factors 1.532 1.192 -0.111 -3.616
25%-SRpr 1.192 0.846 0.328 -0.125 CAPM 1.403 1 0.069 -0.138
40%-SRpr 0.995 0.726 0.532 0.072 HVX 1.371 1.113 0.111 0.234
60%-SRpr 0.786 0.587 0.708 0.271 ZHCT 0.885 0.733 0.629 0.118
75%-SRpr 0.665 0.514 0.791 0.378 AN 1.41 1.012 0.059 -0.065
90%-SRpr 0.588 0.465 0.837 0.449 TW 1.227 0.934 0.289 -0.111
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