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Interpretable Machine Learning for Earnings Forecasts:
Leveraging High-Dimensional Financial Statement Data

Abstract

We predict earnings for forecast horizons of up to five years by using the entire set of Compustat
financial statement data as input and providing it to state-of-the-art machine learning models
capable of approximating arbitrary functional forms. Our approach improves prediction one
year ahead by an average of 11% compared to the traditional linear approach that performs
best. This superior performance is consistent across a variety of evaluation metrics as well as
different firm subsamples and translates into more profitable investment strategies. Extensive
model interpretation reveals that income statement variables, especially different definitions
of earnings, are by far the most important predictors. Conversely, we find that while income
statement variables decline in relevance, balance sheet information becomes more significant
as the forecast horizon extends. Lastly, we show that the influence of interactions and non-
linearities on the machine learning forecast is modest, but substantial differences between firm
subsamples exist.

JEL classification: G11, G12, G17, G31, G32, M40, M41

Keywords: Earnings Forecasts, Cross-Sectional Earnings Models, Machine Learning



1 Introduction

Future earnings play a crucial role in determining the intrinsic value of assets (e.g., Monahan,

2018). Analysts, in particular, use earnings forecasts to derive buy/sell recommendations for stocks

(e.g., Schipper, 1991; Brown, 1993). Earnings also play a key role in corporate decision-making,

serving as a primary financial metric for external stakeholders (Graham et al., 2005). Lastly, as

demonstrated by Ball and Brown (1968), earnings are directly related to stock returns. Return

expectations can even be derived directly from predicted earnings in the form of the implied cost

of capital (ICC) of a company (e.g., Gordon and Gordon, 1997; Claus and Thomas, 2001; Gebhardt

et al., 2001; Easton, 2004; Ohlson and Juettner-Nauroth, 2005).

Earnings forecasts are generally obtained from either analysts or statistical models. Tradi-

tionally, statistical approaches have been primarily simple and linear in nature (e.g., Hou et al.,

2012; Li and Mohanram, 2014).1 With the advent of more advanced statistical models, i.e., ma-

chine learning approaches in particular, various more flexible approaches have been proposed by

researchers (e.g., Cao and You, 2021; Jones et al., 2023).

As outlined by Gu et al. (2020) and Israel et al. (2020), machine learning introduces flexibility

along three dimensions: first, it accommodates complex functional forms. That is, in contrast

to the traditional linear approaches that have been used to predict earnings, machine learning

allows for complex non-linear functional forms. Second, machine learning enables the use of large

conditioning information sets, allowing researchers to uncover previously undetected relationships.

Third, machine learning incorporates advanced optimization techniques, such as regularization,

to prevent overfitting.

To the best of our knowledge, research on earnings prediction has primarily focused on the

first dimension. Put differently, researchers have proposed the use of different types of machine

learning algorithms to approximate the possibly complex functional form that relates predictors

and future earnings (e.g., Cao and You, 2021). In general, more complex machine learning models

are likely to yield more accurate earnings predictions. In fact, Kelly et al. (2022) demonstrate that

increasing complexity, defined as the ratio of model parameters to data, consistently improves

out-of-sample prediction performance in return forecasting. They explicitly recommend to use

1Hereafter, we refer to these models as traditional models.
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rich non-linear model specifications rather than simple linear ones. We argue that further research

along this dimension thus bears little additional insights. Moreover, extant studies on earnings

prediction typically only assess a rather limited set of predictor variables. An important exception

is the study by Chen et al. (2022) which exploits the entirety of Extensible Business Reporting

Language (XBRL) data. Yet, they restrict their analysis to the prediction of earnings changes

and do not predict earnings per se.2 The fact that machine learning allows for the use of large

conditioning information sets as mentioned by Israel et al. (2020) is rather unexploited in this

context so far.

We address this gap by predicting annual earnings per share using a comprehensive set of

variables – namely, the full set of financial statement variables from Compustat. This allows us to

thoroughly analyze how fundamental accounting-based information drives and relates to future

earnings. We employ a selection of prominent, flexible machine learning models, i.e., a random

forest model (RF), a gradient boosted tree model (GBT), a gradient boosted tree model with

dropout (DART), a feed-forward neural network (NN) and an ensemble of the aforementioned

models (ENML).3 We further show how our approach relates to the most widely used traditional

linear approaches, namely a simple model only including earnings as a predictor (L) (Gerakos

and Gramacy, 2012), the HVZ-model (Hou et al., 2012), the EP-model (Li and Mohanram, 2014),

the RI-model (Li and Mohanram, 2014) and an ensemble of the aforementioned models (ENTD).

A key contribution of our study is extensive model interpretation. Understanding the inner

workings of prediction models is a fundamental requirement in asset management applications

(Israel et al., 2020). However, due to their complexity, machine learning models are hard to

interpret. In the machine learning earnings prediction case, model interpretation has thus far

been restricted to metrics of variable importance and partial dependencies. More so, these metrics

have usually been applied to a predetermined, restrictive set of predictor variables as mentioned

above. Put differently, researchers typically choose or construct a set of predictor variables that

they deem important before estimating the model. After estimating the models, they derive the

extent to which variables from this predetermined set contribute to the predictions and assess the

2In fact, as an extension to their main analysis, they also predict earnings levels. However, they only use a set of 24
variables for this and not the high-dimensional XBRL data set which they use for their main analysis. Surprisingly,
their machine learning approach does worse than a simple random walk model. They conclude that earnings levels are
hard to predict and use this as an argument for the fact that they focus on earnings changes in their primary analysis.

3The model selection is based on Bali et al. (2023).
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partial dependencies of predicted earnings in regards to them.

This study aims to broaden the limited scope of model interpretation found in the existing

literature on earnings forecasts: first, we derive the relative importance of variables using SHAP

(SHapley Additive exPlanations) values, an approach based on cooperative game theory (Lundberg

and Lee, 2017).4 Since we do not select or construct variables beforehand as done in comparable

studies (e.g., Hansen and Thimsen, 2020; Cao and You, 2021), we are able to holistically infer

which out of all the financial statement variables are important from a statistical perspective. We

also derive the relative importance of different groups of financial statement variables, such as

cash flow statement (CF/S) variables, income statement (I/S) variables and balance sheet (B/S)

variables. Importantly, we conduct this analysis for forecast horizons of up to five years. This

allows us to assess how different (groups of) variables might vary in terms of their predictive

power, depending on the forecast horizon considered. Second, we analyze non-linearity in the

context of earnings prediction. In addition to partial dependencies that extant studies focus on in

that context (e.g., Cao and You, 2021; Chen et al., 2022), we infer the degree to which different

types of non-linearity play a role. More precisely, we show the degree to which interaction effects

across financial statement variables and other forms of non-linearities, i.e., non-linearity of the

functional form, are important by means of surrogate modeling. This approach is completely

transparent, intuitive and easy to replicate, irrespective of the model or software used. Again, we

conduct these analyses for forecast horizons of up to five years. The last component of our model

interpretation consists of stratifying the sample into different subsamples. Specifically, we group

firms-years according to the life cycle stage, the size tercile, and the industry which the respective

firm is in. We then assess differences in accuracy, variable importance as well as the impact of

interactions and non-linearities across groups. This enables us to more thoroughly understand

how future earnings are related to current fundamental data and to infer which types of firms

require more nuanced and complex earnings predictions models then others.

Our results can be summarized as follows: first, in line with previous research on model

averaging, we find that ensemble models improve predictive accuracy relative to their individual

4SHAP values are a way of explaining the results of any machine learning model. They are based on a game-
theoretic approach that measures the contribution of each player to the final outcome. In machine learning, each
variable is assigned an importance value that represents its contribution to the model’s outcome (Lundberg and Lee,
2017).
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components across both traditional and machine learning approaches. For instance, in one-

year-ahead predictions, the machine learning ensemble further improves accuracy beyond the

best-performing individual machine learning model, achieving an additional 1% gain. Given that

the best machine learning model already substantially outperforms the best traditional model,

this additional improvement underscores the value of ensemble modeling. Notably, the machine

learning ensemble consistently outperforms all component models across all forecast horizons

In terms of bias, the traditional and the machine learning approaches yield very similar results.

Both types of models yield mostly unbiased predictions for forecast horizons of up to three

years. An interesting exception are the traditional models who tend to underestimate one-year-

ahead earnings. For forecasts horizons of four and five years, the models considered begin to

systematically overestimate earnings. However, the machine learning models are consistently less

biased in terms of levels as compared to their traditional analogues.

Mirroring previous findings on machine learning earnings predictions, we further show that

our machine learning approaches constantly outperform traditional linear approaches in terms of

accuracy (e.g., Cao and You, 2021). For the one-year forecast horizon, the best performing machine

learning model, i.e., the ENML is around 11% more accurate than the best performing traditional

model, i.e., the ENTD. Even for long forecast horizons of five years, we find that the ENML beats

the ENTD in terms of accuracy by around 6%. Furthermore, assessing accuracy differences across

out-of-sample periods shows that model performance converges in the periods following the

financial crisis, and diverges in favor of the machine learning approaches afterwards.

Assessing the degree to which the models are able to explain out-of-sample variation in

earnings makes an even more convincing case for the ML approaches. In fact, the average out-of-

sample R2 (OOS R2) of the ENML is between 15% and 23% higher than that of the ENTD for the

forecast horizons considered.

Lastly, we show that the more accurate predictions of the machine learning approach translate

into more profitable portfolios based on ICC. An investment strategy which invests into the

top ICC quintile based on ENML forecasts each year outperforms an analogous strategy which

utilizes ICC based on ENTD forecasts. Moreover, we show that both ICC strategies outperform a

value-weighted market portfolio in terms of cumulative returns.

Turning to model interpretation of the machine learning approach, we find that current I/S
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variables, particularly current earnings, play a dominant role in short-term earnings predictions.

This aligns with traditional models, which also heavily rely on lagged earnings as a key predictor.

However, a key novel finding is that with increasing forecast horizon, variable importance shifts

significantly, becoming more balanced among financial statement types. For one-year-ahead

predictions, I/S variables contribute around 66% while B/S variables contribute around 19% to

total importance. Over longer horizons, this imbalance diminishes: for t + 5-predictions, I/S

variables contribute around 47%, while B/S variables contribute around 37%. CF/S variables con-

sistently contribute around 15% to total importance throughout the forecast horizons considered.

Put differently, the longer the forecast horizon, the more important B/S information becomes.

This shift suggests that while short-term earnings primarily reflect income statement dynamics,

longer-term earnings expectations are increasingly shaped by firms’ balance sheet fundamentals.

Further disentangling the effects of different components of financial statement information

reveals that certain pieces of financial statement information dominate others. For example, debt

and supplemental information resemble the most important pieces of B/S information. Turning

to the CF/S, we find that variables related to the operating cash flow are much more relevant

than variables related to either the investing cash flow or the financing cash flow. Lastly, turning

to the I/S, we find that especially EBIT and net income are important, contributing around 18%

and 25% to total importance for one-year-ahead forecasts, respectively. Interestingly, while the

importance of net income declines to approximately 12% for five-year forecasts, EBIT maintains a

consistent level of significance. This suggests that information which is less exposed to accounting

manipulation gains relevance for longer-term forecasts.

We further show that for one-year-ahead predictions, a linear surrogate model is able to explain

around 90-94% of the variation in machine learning earnings predictions across out-of-sample

periods. Interactions and non-linearities contribute somewhat equally to explaining the remaining

variation. In fact, adding interactions increases the R2 by around 3-4%. We attribute the remaining

unexplained variation to other types of non-linearities, which are not captured by interactions, i.e.,

non-linearity of the functional form. As the forecast horizon increases, the linear surrogate model

provides a progressively less accurate approximation of the relationship between predictions and

inputs, suggesting that longer-term earnings forecasts involve increasingly complex functional

dependencies that require more flexible models to capture effectively.
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The last part of our model interpretation consists of stratifying the sample into different types

of firms, as outlined above. We find that generally, the ENML dominates the ENTD in terms

of accuracy for each firm subsample considered. However, significant differences in accuracy

(improvements) across subsamples exist. Most notably, this can be seen for firms in different life

cycle stages. Earnings of firms in the beginning and the end of their life cycle are forecasted with

substantially lower accuracy than those of firms in the middle of their life cycle. Importantly, it

is precisely for these firms – where earnings predictability is inherently more difficult – that the

ENML achieves the most significant improvements over the ENTD. Moreover, we find that for

these firms, interactions account for a larger portion of the ENML predictions than for firms in

the middle of their life cycle. Again, this suggests that when the prediction task is more complex

– whether due to longer forecast horizons or greater firm heterogeneity – models that allow for

richer interactions and non-linear structures provide a distinct advantage.

The remainder of this paper is structured as follows: In Section 2 we outline the relevant

literature that we are contributing to. In Section 3 we describe our empirical approach. We

evaluate and compare our approach in Section 4. In Section 5 we provide extensive interpretation.

Finally, Section 6 concludes the study.

2 Related Literature

Our work relates to three strands of literature in particular. First, we contribute to the literature on

machine learning applications in finance. Machine learning methods have become the prevalent

way of conducting prediction exercises, primarily due to their superiority in terms of flexibility as

compared to traditional econometric methods and their efficacy in regards to large sets of input

data (e.g., Israel et al., 2020; Kelly et al., 2022). For example, Gu et al. (2020) show how different

machine learning approaches perform in terms of predicting stock returns and Bali et al. (2023)

apply machine learning to the task of predicting option returns. Our study is similar, in the sense

that we predict another financial variable, i.e., earnings, with machine learning.

Second, we apply state-of-the-art techniques to interpret our machine learning predictions,

thereby explicitly responding to the "need for interpretability" of financial machine learning

models as formulated by Israel et al. (2020). We hence also contribute to the literature that aims to
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foster transparency and understanding of machine learning methods for prediction in finance

research, such as e.g., Bali et al. (2023) who extensively assess machine learning option return

predictions.

Third, we contribute to the literature on model-based earnings forecasts. Traditionally, re-

searchers have suggested predicting earnings using time-series regression models (e.g., Ball and

Watts, 1972; Albrecht et al., 1977; Watts and Leftwich, 1977), cross-sectional regression models (e.g.,

Hou et al., 2012; Li and Mohanram, 2014; Harris and Wang, 2019) or even simple random walk

models (e.g., Li and Mohanram, 2014). More recently, however, several machine learning earnings

prediction approaches have been implemented in the research (e.g., Hansen and Thimsen, 2020;

Cao and You, 2021; Chen et al., 2022; Hendriock, 2022; Campbell et al., 2023; Jones et al., 2023;

Van Binsbergen et al., 2023). However, the extant literature differs from our study in several key

aspects which are outlined in the following.

Hansen and Thimsen (2020) also estimate a range of machine learning methods. They use a

more high-dimensional input vector than other studies on predicting level earnings. However, it

is still restrictive in the sense that it is based on prior research and not as high-dimensional as our

data. Moreover, in contrast to our study, no model interpretation is provided.

The study of Cao and You (2021) also encompasses different machine learning models. How-

ever, they use a more restrictive set of input variables than us and provide only limited model

interpretation. Moreover, Cao and You (2021) validate their models using traditional cross-

validation (and a limited hyperparameter space). This, however, destroys the temporal structure

of the observations and introduces information leakage (Gu et al., 2020). We preserve the temporal

ordering of the observations by using fixed training, validation and test intervals.

Chen et al. (2022) use a single model (gradient boosted trees) as opposed to our multi-model

approach. Furthermore, they predict binary earnings changes, while we focus on predicting level

earnings.

Hendriock (2022) suggests predicting earnings by predicting the complete conditional density

function. However, he restricts his input variable space to the one as defined by traditional linear

models. Moreover, he does not provide model interpretation.

Campbell et al. (2023) benchmark an extensive range of machine learning model specifications

with the aim of identifying the ones which compare the best to analyst forecasts. Apart from
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the fact that their model choices differ from ours, they use a different, smaller set of inputs, i.e.,

the Wharton Research Data Services (WRDS) Financial Suite Ratios extended by some additional

variables like e.g., the stock return. Furthermore, they provide limited model interpretation as

their primary focus is on the aforementioned horse-race between model specifications.

Jones et al. (2023) use a single model, i.e., a gradient boosted tree model algorithm, as opposed

to our ensemble approach. In contrast to our study, their target variable is return on net operating

assets and they use a set of six ratios as their predictors. Another crucial difference is that Jones

et al. (2023) exclusively forecast earnings (changes) in t + 1, while we forecast earnings (per

share) for horizons t + 1 to t + 5. Finally, to the best of our knowledge, as the only other study

in this context, they assess the impact of interactions. However, their method of doing so and

their predictor variables differ from ours. Our surrogate modeling approach is easily applicable

to any type of model, in any software and further allows us to explicitly determine the effect

of interaction effects and non-linearity in parameters. Interestingly, our findings in regards to

interactions differ strongly from the ones provided by Jones et al. (2023). They find substantial

importance of interactions, while we find that interactions among financial statement variables are

irrelevant.

Van Binsbergen et al. (2023) use a random forest model to predict earnings conditional on

financial ratios, similar to Campbell et al. (2023). In contrast, our approach involves estimating a

spectrum of machine learning models individually and in ensemble configurations. Moreover, we

utilize an entirely distinct set of input data, specifically the comprehensive Compustat financial

statement dataset. Finally, unlike their study, which primarily assesses analyst biases, our analysis

encompasses detailed explanations of model predictions.

Summing up, to the best of our knowledge, we are the first to predict level earnings per

share for forecast horizons of up to five years using the entirety of available Compustat financial

statement variables. Furthermore, we contribute novel guidance for future research on earnings

(per share) predictions by thoroughly interpreting our state-of-the-art machine learning approaches

using model agnostic and easily applicable methods, something that has been not done extensively

thus far.
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3 Empirical Approach

3.1 General setup

We express earnings E of firm i in period t + τ as the expectation in period t plus an error ϵ:

Ei,t+τ = Et[Ei,t+τ] + ϵi,t+τ. (1)

Every earnings prediction model can be viewed as an attempt to estimate Et[Ei,t+τ], the

expected value. More precisely, we assume that expected earnings in t + τ are a function of a

vector of inputs X of firm i known at time t:

Et[Ei,t+τ] = f (Xi,t). (2)

It becomes evident that modelling expected earnings consists of three crucial parts. First,

one has to determine which inputs enter the model, that is, how X is defined. Second, one has

to decide which functional form f (·) takes on. This corresponds to the decision about which

empirical model to choose from. Lastly, one has to decide on how to estimate f (·), i.e., which

statistical loss function to minimize. The latter is not the explicit focus of this study and thus we

keep it simple. We follow the original implementations of the traditional models and estimate

them using the mean squared error (MSE). In case of the machine learning models, we follow Gu

et al. (2020) and estimate the models both using the MSE and the mean absolute error (MAE) and

report the predictions based on the loss function that leads to more accurate forecasts according

to the price scaled absolute forecast error (PAFE) at the 1-year horizon.5

Thus, apart from the decision regarding the loss-function, the two contrasting extreme ap-

proaches to predicting earnings are: (1) actively making the decision which variables and which

functional form to assume ex ante, and (2) letting the data speak by selecting a model that permits

flexible functional forms and providing it with the entire data (or at least a very large set of

variables) available. The former corresponds to the traditional prediction approaches suggested

by e.g., Hou et al. (2012). To the best of our knowledge, the latter has not yet been implemented

5To be precise, Gu et al. (2020) choose either the MSE or the Huber loss, depending on which performs better. We
choose either the MSE or the MAE, depending on which performs better.
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for earnings per se, a noteworthy exception being Chen et al. (2022) who employ this approach

for (binary) earnings changes. There are approaches that fall in between (1) and (2). In these ap-

proaches, either the functional form or the input vector is restricted significantly (e.g., Hendriock,

2022; Van Binsbergen et al., 2023).

Our study focuses on assessing the second, flexible approach (2) and comparing it to traditional

approaches (1). We more thoroughly elaborate on the choice of the input vector and of the model

in 3.2 and 3.3, respectively.

3.2 Data

US annual financial statement data is obtained from Compustat. Our sample period ranges from

1988 to 2023. This is due to the fact that CF/S-data is only sparsely available prior to 1988. To

conduct the ICC portfolio evaluation, we add price and return data from CRSP to the Compustat

data used for model estimation. Moreover, we drop observations with missing prices, prices

smaller than 1$, missing or zero common shares outstanding or missing earnings. This results in

a final sample for model estimation that consists of 158,809 observations.

For our machine learning models, we use the Compustat financial statement items as predictors.

We drop variables with more than 50% of observations missing or no observations in any of the

cross-sections (i.e., estimation years), yielding 193 variables.6 An overview over these variables

is given in Table B.2 in the Appendix. Analogous to Chen et al. (2022), we include lags and

first-order differences of these variables, resulting in a set of 579 predictor variables in total. For

the traditional models, we construct input variables according to the respective models. An

overview over these variables is given in Table A.1 in the Appendix. All our variables, including

our target variable, are scaled by common shares outstanding and winsorized at the 1%- and

99%-level, respectively. Finally, since neural networks are sensitive to scale differences across input

variables, we standardize each variable.
6We also drop variables already scaled by shares. The reason for that is, that we scale all our variables by shares as

mentioned below and hence these variables are redundant. However, this only pertains to five variables in our study.
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3.3 Models

We estimate two groups of models. The first group consists of popular simple linear models

that have been introduced in the literature thus far. All of these models assume a linear additive

relation between earnings and some low-dimensional input vector, i.e.,

Et[Ei,t+τ] = βXi,t, (3)

where β denotes a vector of coefficients. The models differ in terms of which variables the

input vector consists of. A more detailed description is given in Appendix A.1. A difference to

be noted is that the models also slightly differ in how they define the output. While the RI and

the EP model use earnings per share, the HVZ model uses earnings. In this study, we define

earnings as "income before extraordinary items" (Compustat variable: ib). As mentioned above,

we consistently scale our output as well as our input variables by common shares outstanding in

all of the models. Our forecast horizon, both for this and the following group of models spans

from τ = 1 to τ = 5.

The second group of models consists of flexible models that are able to approximate arbitrary

complex functional forms. Put differently, we do not assume any specific type of functional form

when estimating these models. Analogous to Bali et al. (2023), we estimate a random forest model

(RF), a gradient boosted tree model with (DART) and without dropout (GBT) and a neural net

(NN). Importantly, we try to restrict our input vector as little as possible. Specifically, we feed the

models the 579 variables as outlined above, including the lags and first-level differences. We argue

that this input vector corresponds to a proxy for the entirety of (relevant) financial statement input

variables. Note that extending the input vector even further implies more computational effort.7

Since studies in other realms of financial forecasting have shown that using an ensemble of

models may prove superior to using single models (e.g., Bali et al., 2023), we derive the equally

weighted average prediction for both groups of models, i.e., we derive two ensemble model

predictions:

7We could have also included other variables like price, analyst forecasts, etc. (e.g., Campbell et al., 2023;
Van Binsbergen et al., 2023). However, the focus of our study is the thorough analysis of the relationship between
fundamental accounting-based information and future earnings.

12



E
(En)
t [Ei,t+τ] =

1
J

J

∑
j=1

E
(j)
t [Ei,t+τ], (4)

where j ∈ J denotes the respective single model and En denotes the respective ensemble

model.

The ensemble of the traditional models is denoted by ENTD and the ensemble of the fully

flexible machine learning prediction models is denoted by ENML.

3.4 Out-of-sample approach

We employ a rolling window strategy to obtain our out-of-sample prediction results. Specifically,

for the machine learning models, we divide our data into training, validation and test sets. For

each forecast horizon τ, the process for generating forecasts as of t proceeds as follows: we train

our models using earnings from t − 11 to t − 2 as output and corresponding financial statement

data lagged by τ as predictors. Next, we tune the machine learning models using earnings from

t − 1 to t as output and lagged financial statement data by τ as predictors. Tuning involves

determining the optimal hyperparameter values for the model, as detailed in Table B.1 in the

Appendix. Subsequently, earnings predictions for t + τ are derived by inputting variables from t

into the optimized models. This process is repeated recursively, advancing one year at a time. We

follow the approach of Hou et al. (2012) and Li and Mohanram (2014), estimating models at the

end of June each year, under the assumption of a reporting lag of three to fourteen months for

financial statements.8

In contrast, traditional linear approaches do not require a tuning window. Hence, we only

partition the data into training and test sets when estimating these models. The subsequent steps

of the procedure remain unchanged. More precisely, for each forecast horizon τ, models are

trained using earnings from t − 11 to t as output and corresponding lagged financial statement

data by τ as predictors. Earnings predictions for t + τ are then derived by utilizing predictor

variables from t.
8Specifically, data from April of year t − 1 to March of year t is considered the most recent fiscal year-end data

available as of June in year t, capturing the information as of t.
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3.5 Evaluation

We evaluate the predictive performance of the models across a range of evaluation metrics. First,

we compute the error metrics that are common in the earnings prediction literature (e.g., Hou

et al., 2012). For each forecast horizon τ ∈ [1, 2, 3, 4, 5], these include the price scaled forecast error

(PFE) or bias:

PFEi,t+τ =
Ei,t+τ − Êi,t+τ

Pricei,t
, (5)

and the price scaled absolute forecast error (PAFE) or accuracy:

PAFEi,t+τ =
|Ei,t+τ − Êi,t+τ|

Pricei,t
, (6)

where Ei,t+τ denotes actual earnings for firm i in period t + τ, Êi,t+τ denotes the respective

forecast and Pricei,t is the firm’s stock price at the end of June in the respective estimation year.

Second, we assess the out-of-sample R2 (OOSR2) of each individual as well as the ensemble

forecasts, i.e., for every out-of-sample period we calculate

OOS R2
t+τ = 1 − Σnt+τ

i=1 (Ei,t+τ − Êi,t+τ)
2

Σnt+τ

i=1 (Ei,t+τ − Ēt+τ)2
, (7)

for each model. Here, Ēi,t+τ denotes average earnings of firms in period t + τ. Albeit not

commonly used in the earnings prediction literature (e.g., Hendriock (2022) being an exception),

this evaluation metric is of particular importance for the typical use case of earnings predictions,

i.e., long-short ICC portfolios. In this context, predicting cross-sectional variation is much more

important than accurately predicting earnings per se, since an investor goes long (short) the stocks

which’s ICC is high (low) in cross-sectional comparison.

Lastly, we derive the ICC based on the two ensemble forecasts. We follow the literature and

calculate ICC following the methods of Gordon and Gordon (1997), Claus and Thomas (2001),

Gebhardt et al. (2001), Easton (2004) and Ohlson and Juettner-Nauroth (2005).9 More precisely,

our ICC estimates are derived as the average of the five aforementioned methods using both the

traditional ensemble and the machine learning ensemble earnings predictions. We then construct

9A description of the models is provided in Appendix C.
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equally weighted long-short zero investment portfolios based on ICC and assess their average

performance across the out-of-sample periods.

3.6 Interpretation

A primary contribution of this study is the comprehensive interpretation of the machine learning

approach, addressing a key issue in machine learning applications in finance and accounting

(Israel et al., 2020). Our study fills a gap in the existing literature, which either lacks model

interpretation entirely or provides only limited insights, as discussed above. More precisely, we

derive the variable importance and the degree to which different types of non-linearity play a role

for our best performing machine learning model, i.e., the machine learning ensemble. Further, we

assess differences in accuracy, variable importance as well as the degree of non-linearity across

different subsamples of firms.

Variable importance

We determine the importance of the different variables with respect to the earnings prediction.

To do so, we compute their SHAP values, a state-of-the-art approach for assessing the importance

of input variables which is based on cooperative game theory (Lundberg and Lee, 2017). In

essence, SHAP values approximate how a model’s prediction changes when knowing the value

of a respective input variable. The approach is model-agnostic and allows us to evaluate the

importance of input variables irrespective of the model used. We conduct these analyses at both

the individual variable level and the grouped-variable level. Specifically, we determine the relative

importance of predictors grouped into balance sheet, cash flow statement, and income statement

data as well as predictors grouped into current, lagged, and difference variables. Furthermore,

we provide an in-depth accounting perspective on which specific types of financial statement

information are important by breaking the financial statements down into schematic components.

Importantly, we conduct these analyses per forecast horizon.

Non-linearity

In addition to deriving the variable importance, we also evaluate the extent to which non-
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linearity plays a role in our machine learning model.

First, we assess the degree to which non-linearity in terms of variables and non-linearity in

terms of functional form play a role. In a first step, we regress predicted earnings on the 20 most

important input variables using a linear regression model.10 In a second step, we add all possible

two-way interactions to the surrogate regression model from the prior step. Assuming there is

some degree of non-linearity present in the fully flexible model, this allows us to disentangle

the degree to which non-linearity in terms of variables (i.e., interactions across inputs) and

non-linearity in terms of functional form play a role. More specifically, we assess the adjusted

in-sample R2s of the two surrogate models. The R2 of the first-step surrogate model indicates

the degree to which the predictions are linear. The difference between the R2 of the first-step

surrogate model and the second-step surrogate model indicates the degree to which non-linearity

in terms of variables, i.e., (two-way) interactions across financial statement variables, plays a

role. We attribute the portion that remains unexplained by the second-step surrogate model to

non-linearity in functional form.11

Second, we assess the partial dependence of earnings with respect to the most important input

variables. As typically done in the literature, we evaluate the partial dependencies graphically

via so-called partial dependence plots. To do so, we fit a non-parametric lowess model (locally

weighted linear regression) to the SHAP values of a predictor value of interest (the output) and

the associated predictor values (the input) and plot the result. This allows us to approximate the

effect of the respective predictor variable on future earnings.

Again, we conduct the surrogate modeling and the partial dependence analyses per forecast

horizon.

Subsample analysis

The last part of our model interpretation comprises of a subsample analysis. More precisely,

we briefly assess differences in accuracy, variable importance as well as non-linearity across

different subsets of firm-year observations. Inter alia, this assessment allows us to determine

10We only use the 20 most important variables, because otherwise, including all possible two-way interactions in the
second step requires an excessive amount of computing power. More so, we find in undocumented results that adding
more variables does not significantly change the results.

11Theoretically, the unexplained portion also includes effects of interaction terms of order three and higher. However,
we assume that these can be neglected and find evidence for this assumption in undocumented analyses.
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whether the superiority of the machine learning model stems from specific subsamples specifically

and whether there exist differences in how current fundamental information is related to future

earnings across different subsets firms.

We consider three ways of stratifying the sample: first, we stratify predictions according to the

life-cycle stage the respective firm is in in the period in which the forecast is conducted. We define

life-cycle stages following Dickinson (2011).12 Second, we stratify predictions according to the

firm size, measured via market capitalization as of the period in which the forecast is conducted.

Lastly, we stratify predictions according to the industry, defined via the Fama-French 5 industries,

a firm is in as of forecast date.13

4 Evaluation

4.1 Accuracy and bias

Chen et al. (2022) report that their machine learning approach does worse than a simple random

walk type model when predicting level earnings. They explicitly state that level earnings are hard

to predict and thus resort to the prediction of earnings changes in their main analysis. In contrast,

mirroring findings by e.g., Cao and You (2021) our flexible machine learning models for earnings

(per share) level prediction outperform the traditional linear models by a significant margin.

Price scaled forecast error

Table 1 shows the time-series averages of the median PFE for the four traditional, the four

machine learning and the two ensemble models. The PFE provides insight into whether the

estimated earnings are systematically over- or underestimated (biased) relative to actual earnings.

In general, the two ensemble models appear to be the least biased models for each group of

models considered. Both models yield insignificant biases in most cases. This is in line with extant

studies on earnings prediction, which report that earnings predictions by statistical models do

not exhibit biases as opposed to those by analysts (Hou et al., 2012). In fact, only the traditional

12The classification scheme is summarized in Table D.1 in the Appendix.
13Industries are defined following the Fama-French 5 industry portfolios classification, available on Kenneth

French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html)
website. The classification scheme is summarized in Table D.2 in the Appendix.
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ensemble yields significant biases for two out of five forecast horizons considered. Interestingly,

it systematically underestimates earnings in t + 1. Both ensemble models tend to systematically

overestimate earnings with increasing forecast horizons. However, the machine learning ensemble

achieves between 44.80-87.50% lower biases, depending on the forecast horizon.

The results further indicate that at the non-ensemble level across forecast horizons t + 1 to

t + 3, some models yield statistically significant PFEs, with the most biased machine learning

model for t + 1 being the RF model (0.0059) and the most biased traditional model for t + 1 being

the RI model (0.0063). Interestingly, the three more sophisticated traditional models systematically

underestimate earnings in t + 1, reflecting the aforementioned results regarding the ensembles.

For t + 4 no single model yields statistically significant PFEs, while for t + 5, most non-ensemble

models yield PFEs that are significantly different from zero. Overall, our findings suggest that

non-ensemble machine learning models generally yield lower PFEs compared to their traditional

counterparts.

In conclusion, machine learning models generally exhibit lower bias. Additionally, earnings

prediction models tend to systematically overestimate earnings as the forecast horizon increases,

regardless of whether traditional linear or machine learning methods are employed

[TABLE 1 ABOUT HERE]

Price scaled absolute forecast error

Turning to the next evaluation metric, Table 2 reports the time-series averages of the median

PAFEs for the four traditional, the four machine learning and the two ensemble models. The PAFE

is a measure for the accuracy of a model, with values closer to zero indicating higher accuracy.

First, we observe a positive effect of model stacking. Overall, among the traditional models,

the best-performing one is the traditional ensemble, while among the machine learning models,

the best-performing one is the machine learning ensemble. Specifically, the machine learning

ensemble outperforms each of its individual component models for every forecast horizon. The

same is true for the traditional ensemble for the horizons t + 1 to t + 2. Especially in the traditional

case, this result is surprising, since the models differ very little in terms of the predictor variables.

For forecast horizons t + 3 to t + 5, the traditional ensemble performs slightly worse than the best
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performing traditional component model(s) (0.0396 vs 0.0394 in t + 3, 0.0445 vs 0.0438 in t + 4

and 0.0505 vs 0.0494/0.0504 in t + 5). Second, we find that in most cases, all machine learning

models, including the ensemble, outperform all traditional models, including the ensemble, for

all prediction horizons. However, for forecast horizons t + 3 to t + 5, the RI as well as the ENTD

model are more accurate than some of the machine learning component models. This stresses the

benefit of model averaging for the non-linear machine learning models specifically. The difference

in accuracy between the machine learning and the linear ensemble is at a statistically significant

level between -0.0020 and -0.0032. This translates into a relative difference of 11.44% for earnings

in t + 1 to 6.34% for earnings in t + 5. The ENML thus provides not only statistically significant,

but also economically meaningful gains in accuracy over the traditional models.

[TABLE 2 ABOUT HERE]

Figure 1 illustrates the median PAFE of the ENML and ENTD for each out-of-sample year

and for forecast horizons of t + 1 and t + 5, respectively. The plots illustrate that the overall

PAFE levels strongly increase with increasing forecast horizon. Furthermore, they reveal that the

machine learning ensemble is more accurate in all years and for both forecast horizons, except for

2009, in which the ENTD yields slightly more accurate t + 5 forecasts than the ENML. In general,

the difference between the ENML-PAFE and the ENTD-PAFE varies across out-of-sample periods.

[FIGURE 1 ABOUT HERE]

4.2 Out-of-sample R2

The next metric considered is the out-of-sample R2 (OOS R2). The results are reported in Table 3.

The OOS R2 allows us to assess how the models perform in terms of explaining out-of-sample

variation in future earnings.

As expected, the OOS R2 decreases with increasing forecast horizon. Moreover, the results

generally confirm the positive effect of model stacking. Our analysis demonstrates that the

machine learning ensemble consistently outperforms its individual components across all forecast

horizons considered. In contrast, there are instances in which the traditional ensemble exhibits
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slightly lower performance than the RI and the EP model for specific forecast horizons throughout

forecast horizons t + 1 to t + 3. Nevertheless, the traditional ensemble consistently outperforms

all of its component models for the forecast horizons t + 4 to t + 5. This outperformance is

particularly strong for t + 5 forecasts, amounting to 28.30% when comparing it to the second-best

performing traditional model.

Furthermore, our findings validate the notion that machine learning approaches surpass

traditional linear models in terms of predictive performance. To be more specific, when we

compare the OOS R2 of the machine learning models, including the ensemble, against that of the

traditional models, including the ensemble, we find that the machine learning models outperform

the traditional ones in most cases. In fact, just assessing the best-performing models, i.e., the

ensembles, we find that the machine learning ensemble beats its traditional counterpart for every

forecast horizon. The difference in OOS R2 between the ensemble models is statistically significant

at the 1% level for forecast horizons t + 1 to t + 3. Further, while the relative PAFE difference

between the ensembles decreases with increasing forecast horizon, the difference in OOS R2

increases from 14.91% for t + 1 predictions to 23.40% for t + 5 predictions, in relative terms.

[TABLE 3 ABOUT HERE]

Figure 2 plots the OOS R2 for the ENML and ENTD for each year and for t + 1 and t + 5,

respectively. Again, it is evident that the machine learning ensemble outperforms the traditional

ensemble in the majority of years and for both forecast horizons. Remarkably, the OOS R2 of both

ensemble models exhibits a noticeable dip around 2009, particularly pronounced in forecasts for

t + 5. Notably, for t + 5 forecasts, it takes some years for the OOS R2 to rebound. This result

underscores the delayed integration of new information, such as the financial crisis in this case,

into longer-term forecasts. Such delayed adaptation is inherent in the rolling window approach

we employ.

[FIGURE 2 ABOUT HERE]
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4.3 Implied cost of capital

A common application of earnings forecasts is the derivation of the implied cost of capital (ICC),

for which earnings predictions serve as a crucial input. We restrict this analysis to the best

performing traditional earnings forecast model, i.e., the traditional ensemble, as well as the best

performing machine learning earnings forecast model, i.e., the machine learning ensemble.

We evaluate the return predictions via ICC as follows. At the end of June in a given year t

we estimate the ICC as an average of five commonly used methods.14 We then sort stocks into

quintiles according to the estimated ICC and buy the top quintile.15 We then evaluate the return

from July in t to June in t + 1 and repeat the process. This long-only strategy corresponds to

a theoretically feasible and easily implementable strategy. In Figure 3 we show how an initial

investment of 1$ would have developed over the out-of-sample periods. We plot the $-portfolio

value based on the ENTD-ICC and the ENML-ICC. As an additional benchmark, we also plot the

value of a value-weighted market portfolio for the same period.16

The plot reveals two key insights. First, (long-only) ICC investment strategies seem to work

well in general. Both ICC portfolios outperform the value-weighted benchmark portfolio that we

include. Second, the ENML-ICC portfolio outperforms the ENTD-ICC portfolio by a significant

margin. More precisely, at the end of the out-of-sample periods, the initial investment of the

ENML-ICC portfolio grew to a value of around $ 6, outperforming the ENTD-ICC portfolio by

around $ 1.2.

[FIGURE 3 ABOUT HERE]

We conclude that the improved accuracy of machine learning predictions translates into more

profitable investment strategies, thereby stressing the practical importance of earnings prediction

accuracy.

14An overview over these methods is provided in Appendix C.1.
15Note that this quintile corresponds to the stocks for which the return expectation is the highest based on the ICC.
16Value-weighted returns are retrieved from CRSP. More specifically, we annualize the monthly value-weighted

market returns including dividends.
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5 Interpretation

5.1 Variable importance

As outlined above, we assess the degree to which financial statement variables matter in the

machine learning ensemble by computing their SHAP values.17 More precisely, we compute

SHAP values per out-of-sample period and derive their respective averages for each variable.

Figure 4 shows the mean absolute SHAP values of the ENML, averaged over all out-of-sample

periods and scaled so that variable importance per forecast horizon sums to one. We show

the twenty most important variables for predicting earnings in t + 1 and sort them according

to their importance.18 The higher the SHAP value, the more important the variable. For t + 1

predictions, ib, i.e., current earnings, is the most important variable by far.19 This comes as no

surprise, considering that a simple model including only current earnings as a predictor performs

comparably well in predicting future earnings.

A striking finding is that the remaining 19 most important variables are primarily different

definitions of earnings. For example, the second most important variable oiadp resembles "oper-

ating income after depreciation" and the third most important variable ebit resembles "earnings

before interest and taxes". The only top-twenty variables that do not originate from the income

statement are oanc f and f opo.

In general, few variables dominate across forecast horizons t + 1 to t + 5. Another finding

regarding the different forecast horizons is that the significance of ib gradually diminishes with

increasing horizon. Instead, oiadp, another earnings variable, emerges as the most important

variable. Moreover, one of the variables not stemming from the income statement, i.e., oanc f ,

becomes increasingly important with increasing forecast horizon.

Lastly, the results suggest that current data is more important than lagged data or first order

differences. We revisit this claim below.

[FIGURE 4 ABOUT HERE]

17We focus on the ensemble model as it is the best performing machine learning approach.
18The variable definitions are provided in Table B.2 in the Appendix.
19Note that this is the earnings definition that we use as our target variable. Further note that all of our variables are

scaled by common shares outstanding. Thus, strictly speaking, we refer to earnings per share when talking about ib.
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We now explore whether the most important predictor variables act as substitutes or comple-

ments. This assessment is conducted by examining the absolute Pearson correlation coefficients

of the top-twenty variables reported in Figure 5. If the variables are substitutes, one would

expect high coefficient values. In general, we find mixed results. pi, ibcom, ibadj, ni, ibc and

niadj are correlated quite strongly with ib and each other. All of these are variations of earnings

definitions which do not differ strongly from each other. This observation leads us to consider

these variables as substitutes for ib, indicating that they do not necessarily possess significant

independent predictive power. Other variables, that are not as closely related to ib, either because

they explicitly exclude major income statement items, such as oiadp, or because they are not

income statement items at all, such as oanc f , do not correlate as strongly with earnings. We

interpret this as evidence that these items are complements to ib and hence possess stand-alone

predictive power.

[FIGURE 5 ABOUT HERE]

5.2 Group importance

Table 4 reports variable importance per group. More precisely, we group the variables according to

the financial statement they originate from (Panel A), whether they are current, lagged or change

information (Panel B), and according to the two aforementioned categories (Panel C). Grouping

the variables according to the financial statement they originate from reveals that income statement

(I/S) variables are the most important variables. On average, for one-year-ahead predictions,

I/S variables contribute approximately 67% to the total importance, while balance sheet (B/S)

variables and cash flow statement (CF/S) variables contribute around 19% and 15%, respectively.

This finding aligns with the analysis of the most important variables, indicating that I/S variables

significantly outweigh others in importance for predicting earnings. However, we also find that

I/S variables become less important with increasing forecast horizon. In fact, the importance

of I/S variables decreases to around 47% for t + 5 forecasts. In contrast, B/S variables become

more important with increasing forecast horizon (around 37% for t + 5 predictions) while CF/S

variables stay at a constant level.
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[TABLE 4 ABOUT HERE]

Grouping variables according to whether they are current, lagged or difference variables

in Panel B reveals that current data is by far the most important group out of these categories,

contributing around 74% of total importance for t+ 1 predictions. Lagged and difference data each

contribute around 13 − 14% to total importance for t + 1 predictions. Again, importance becomes

more evenly distributed among the groups with increasing forecast horizon. More precisely,

current variables become less important while lagged variables become more important. This

might be the case because short-term forecasts are heavily influenced by current information due

to their sensitivity to recent developments. Longer-term forecasts benefit from a combination of

current and lagged information to capture the interplay of short-term dynamics and longer-term

trends.

Further breaking down the groups according to the two aforementioned categories stresses

the findings above. Overall, current I/S variables contribute around 55% to total importance for

t + 1 forecasts and hence represent the most important group of variables by a significant margin.

This is intuitive and supports the finding that simple earnings forecasts models only considering

current earnings items, like the L model or the EP model, perform comparably well in predicting

future earnings.

We conclude our variable importance assessment by more thoroughly analyzing the variable

importance per financial statement type in Table 5. More precisely, we assess the importance of

each financial statement type per schematic financial statement component, such as e.g., current

assets, fixed assets or equity, in the B/S case. This analysis provides an intuitive accounting

perspective on which components of financial statements are important and how the importance

might change across forecast horizons.

[TABLE 5 ABOUT HERE]

The table provides several key insights: first, assessing the B/S, we find that the debt and

supplemental items are the most important pieces of B/S information, with both contributing

around 5-6% to total importance for t + 1 forecasts. Moreover, all pieces of B/S information
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consistently increase in importance with increasing forecast horizon.

Second, variables associated with the operating cash flow resemble the most important category

of CF/S variables. This comes as no surprise, since the operating cash flow closely relates to

earnings. The relevance of the investing cash flow slightly increases with increasing forecast

horizon. However, overall, the differences are minor.

Third, different definitions of earnings, i.e., EBITDA, EBIT, EBT and net income, resemble the

most important I/S categories. Out of these categories, EBIT and net income are the most important

categories with around 18% and 25% share in total importance, respectively. Interestingly, the

importance of EBIT only slightly declines with increasing forecast horizon, whereas the importance

of the net income consistently strongly declines with increasing forecast horizon to around 12%

for t + 5 forecasts. This dynamic might be attributable to the fact that net income is more strongly

exposed to accounting manipulation than EBIT and hence less reliable in the long-term. Moreover,

we find that while sales contribute very little overall, they consistently increase in importance

with increasing forecast horizon. This supports the notion that items which are less exposed

to discretionary accounting gain predictive value when considering longer forecast horizons.

Revisiting the aforementioned finding that operating cash flow variables maintain consistent

importance across forecast horizons further reinforces this notion. Unlike earnings, cash flows

include no discretionary accural items and are hence not exposed to earnings management (e.g.,

Jones, 1991). Consequently, their predictive value does not decrease for longer-term forecasts. In

summary, these findings suggest that the variations in importance across forecast horizons are

primarily driven by the presence of earnings management. Future research endeavors could offer

additional insights into these dynamics.

5.3 Non-linearity

We now approximate the degree to which non-linearity of the functional form and non-linearity of

variables, i.e., interactions among financial statement variables considered, play a role in predicting

earnings.
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Surrogate model

We find that for our flexible ENML approach, around 94% of the variation in predicted

earnings can be explained by the linear surrogate model for t + 1 predictions on average. This

indicates that the ENML predictions can still be approximated quite accurately by a linear model.

More so, it indicates that interaction effects as well as non-linearity of the functional form do

not play a major role, on average. In fact, including two-way interactions increases the average

adjusted R2 by around 2 percentage points, on average. The remaining unexplained portion

of variance of the ENML predictions is attributable to the non-linear functional form of the

ENML.20 We depict this graphically in Figure 6. The figure shows the adjusted in-sample R2

per out-of-sample period, derived by regressing predicted ENML earnings on a linear surrogate

model and a linear surrogate model including two-way interactions. The figure also includes the

surrogate models for predictions for t + 5. With increasing horizon, a slightly larger portion of

the earnings-predictor relation can be attributed to interaction effects and non-linearity of the

functional form. Nonetheless, the linear surrogate model still explains around 90% of the t + 5

predictions on average.

[FIGURE 6 ABOUT HERE]

Partial dependence plots

We now turn to how the aforementioned degree of non-linearity is expressed at the variable-

level. Figure 7 shows the partial dependence plots for ib, oiadp, ebit and oanc f for all forecast

horizons.21 The partial dependence measures the sensitivity of the predicted earnings to the

individual financial statement variables.

The upper-left panel shows the effect of ib on the model output. Remarkably, the sensitivity

appears to be linear for both positive and negative values of ib. However, there is a distinction in

the slope of the line for positive and negative values, suggesting varying sensitivities of future

earnings to current earnings for profit and loss firms, respectively. This may explain why the EP

model and the RI model by Li and Mohanram (2014) yield comparably good forecasting results,

20Theoretically, it can also be attributed to higher-order interactions and variables which we did not include.
However, in undocumented results, we find that this is not the case.

21We plot the partial dependence of the three most important variables and the most important variable not
stemming from the income statement.
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especially for short forecast horizons. The two models include a dummy for negative earnings

and the interaction between earnings and the negative earnings dummy, which essentially allows

for different slopes of ib for profit and loss firms.

For ebit in the lower-left panel we find a similar trend as for ib. For oiadp, there is also a

difference in slopes between profit and loss firms, especially for longer forecast horizons. However,

the kink appears slightly below zero. Also, interestingly, for t+ 1 forecasts, the change relationship

appears to be concave. In contrast oanc f is essentially linearly related to future earnings across all

forecast horizons.

[FIGURE 7 ABOUT HERE]

5.4 Subsamples

We now turn to the subsample analysis. More precisely, we assess the ENML predictions per life

cycle stage, firm size tercile and industry. This analysis allows an assessment of where exactly

overall accuracy improvements stem from and whether the relation between current fundamental

data and future earnings differs for different subsets of firms. For the sake of comprehensiveness,

we are restricting this analysis to the two ensemble models and focus on the key evaluation and

interpretation metrics, i.e., the median PAFE, variable importance as well as the surrogate models.

Life cycle

First, similar to Easton et al. (2024), we stratify predictions according to the life cycle stage

that a firm is in as of the estimation date. Importantly, life cycle classifications are only used for

evaluation, not for estimation – meaning that the ML models do not directly "see" which life cycle

stage a firm belongs to. Despite this, the ML models produce much better predictions for firms at

the beginning and at the end of their life cycle, suggesting that they implicitly detect patterns in

the underlying financial statement data that distinguish these firms.

Assessing accuracy differences using the median PAFE reveals interesting patterns. First,

ENML outperforms ENTD in every life cycle stage and for every forecast horizon. Second, firms

at the beginning of their life cycle (labelled "Intro") and at the end (labelled "Decline") exhibit the
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lowest overall accuracy by far. However, these are also the stages where ML provides the largest

improvement: for t + 1 forecasts, ENML reduces median PAFE by 0.0110 and 0.0086 for firms in

their "Intro" and "Decline" stages, respectively – while improvements for "Growth," "Mature," and

"Shake-out" firms range from 0.0022 to 0.0034. These results are visualized in Figure 8.22

[Figure 8 ABOUT HERE]

Turning to variable importance, we find no significant differences across life cycle stages. As

summarized in Table 6, the importance of financial statement information in forecasting future

earnings remains consistent across life cycle stages.23 More precisely, for firms in every life cycle

stage, income statement data is the most important group of predictors for t + 1 forecasts, while

balance sheet data becomes more important for longer horizons.

[TABLE 6 ABOUT HERE]

Lastly, we examine the degree to which interaction effects and non-linearities play a role

for different life cycle stages. Table 7 reports the results. In general, we find a decrease in the

linear surrogate model’s R2 with increasing forecast horizon, indicating that non-linearities and

interactions become more important over time. This decrease is observed for all life cycle stages.

Nevertheless, the effects differ strongly across life cycle stages. For "Intro" and "Decline" firms, a

simple linear surrogate model without interactions explains only 86-87% of ENML predictions,

whereas for "Growth," "Mature," and "Shake-out" firms, it explains 94-95%. However, once we

introduce interaction terms, the surrogate model explains 97-99% of the ENML predictions for

all life cycle stages. This suggests that interaction effects are particularly important for firms at

the beginning and end of their life cycle, which aligns with the stronger accuracy improvements

observed for these firms. Importantly, these effects are uncovered by the ENML despite the fact that

life cycle stages are not provided as an input. Instead, it autonomously captures complex patterns

in financial statement data that distinguish these firms and enhance earnings predictability.

22The results for all forecast horizons are summarized in Table D.3 in the Appendix.
23In untabulated results, we find that this is also true for importance on the variable as well as the financial statement

component level.
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[TABLE 7 ABOUT HERE]

Firm size

Next, we stratify predictions according to the size of the firm as of estimation date. In line

with the literature, we find that the larger the firms, the higher the prediction accuracy (Li and

Mohanram, 2014). Nonetheless, the ENML outperforms the ENTD for each size subsample

considered. Further, we find that the accuracy improvements increase with decreasing firm size.

More precisely, for t + 1 forecasts, the ENML yields a median PAFE improvement of 0.0073 for

small firms and of 0.0030-0.0033 for medium and large firms. We visualize these findings in Figure

9.24

[FIGURE 9 ABOUT HERE]

In terms of variable importance, we find no significant differences between the findings

regarding the full sample and the sample stratified by size. We summarize the results with respect

to the financial statements in Table 8.25

[TABLE 8 ABOUT HERE]

Turning to the surrogate models, we again find a decrease in linear surrogate R2, i.e., an

increasing influence of non-linearities and interactions in the ENML, with increasing forecast

horizon. Moreover, as in the life cycle analysis, the surrogate R2s match the differences in accuracy

improvements across subsamples. The ENML achieves the highest accuracy improvements for

the small firm subsample and it is this firm subsample for which adding interactions leads to the

largest gains in surrogate R2. Again, the effect of nonlinearities, which we infer from the portion

of the variance in ENML predictions which is not explained by the surrogate model including

interactions, is constant across subsamples. The results are summarized in Table 9.

24The results for all forecast horizons are summarized in Table D.4 in the Appendix.
25In untabulated results, we find that this is also true for importance on the variable as well as the financial statement

component level.
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[TABLE 9 ABOUT HERE]

Industry

Lastly, we stratify the predictions according to the industry the respective firm is in as of

the estimation date. We find that the ENML outperforms the ENTD for nearly all forecast

horizons and industries. In fact, the ENML improve the median PAFE by 0.0032-0.0050, depending

on the industry. The aforementioned range highlights the substantial variations in accuracy

enhancements across different industries. The results are visualized in Figure 10.26

[FIGURE 10 ABOUT HERE]

Turning to variable importance, we again find that stratification of the sample does not lead to

results that differ from that for the full sample. We report the importance per financial statement

in Table 10.27

[TABLE 10 ABOUT HERE]

Interestingly, the surrogate R2s do not match the results regarding accuracy as in the two cases

above. The surrogate modeling results are reported in Table 11. For example, the ENML achieves

the highest accuracy gains over the ENTD for firms within industry "4". Yet, the degree to which

interaction terms and non-linearities play a role for the ENML predictions are not the highest for

this industry, as indicated by the surrogate R2s. We conclude that when stratifying by industries,

it is primarily the additional variables which we feed to the ENML which lead to differences in

predictive performance. Again, the effect of the non-linear functional form appears to be modest

and slightly lower than the effect of interactions, in general.

[TABLE 11 ABOUT HERE]
26The results for all forecast horizons are summarized in Table D.5 in the Appendix.
27In untabulated results, we find that this is also true for importance on the variable as well as the financial statement

component level.
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6 Conclusion

We show that earnings per share predictions based on state-of-the-art machine learning approaches

using high-dimensional financial statement data are more accurate than those based on traditional

linear approaches. These improvements hold across all evaluation metrics assessed, i.e., commonly

used error metrics, the OOS R2 as well as the performance of long-short ICC portfolios based on

the predictions.

Importantly, we provide an intuitive breakdown of how important the different pieces of

fundamental accounting information are for predicting earnings. We find that current I/S variables,

especially current earnings, are the most important predictors. However, with increasing forecast

horizon, variable importance becomes more balanced. More precisely, B/S information becomes

much more important whereas I/S information becomes less important with increasing forecast

horizon. Thoroughly disentangling the different financial statements suggests that this dynamic

may be attributable to earnings management.

As the first study to thoroughly decompose the effects of non-linearity in the earnings

prediction context we find that especially for short term-horizons, the relationship as approximated

by the best performing machine learning model, i.e., the machine learning ensemble, can still be

described by a linear surrogate model to a large extent. More precisely, we find that on average

around 94% of the variance in machine learning ensemble predictions can be explained by a linear

model, depending on the forecast horizon. Interactions and non-linearity of the functional form

somewhat equally contribute to the remaining small unexplained portion of predictions. As the

forecast horizon increases, the linear surrogate R2 decreases slightly.

We conclude our empirical analysis by stratifying firms into different subsets and assessing

differences in accuracy, variable importance and non-linearity. Overall, the ENML beats the ENTD

for every subset of firms considered. However, significant differences in terms of accuracy and

improvements of accuracy of the ENML as compared to the ENTD exist across firm subsets.

Moreover, the degree to which the ENML exploits interactions across fundamental variables

appears to vary across life cycle stages and firm size terciles.

Our findings provide important guidance for future research. First, we show that machine

learning approaches are an excellent tool for earnings predictions. We hence argue that research
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which uses (model) earnings predictions in some way or another should resort to machine learning

methods, if high accuracy is desired. Second, we show which financial statement variables and

groups thereof are important. Future research may build upon that when building models and

deciding which variables to include. Importantly, this includes the differences in terms of variable

importance across forecast horizons. For example, if one is interested in an earnings prediction

model including only a small number of variables for computation-related reasons, employing

distinct (small) sets of variables for different forecast horizons might be beneficial. Lastly, we

show that model-based forecast performance as well as the degree to which complex forecast

models are necessary differs between subsets of firms. Additional research that further aims to

disentangle these relations and their causes is an interesting avenue for future research and could

ultimately lead to further forecast model improvements.
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Figure 1: PAFE across out-of-sample periods
This figure shows the median price scaled absolute forecast errors (PAFEs) of the machine-learning ensemble
(ENML) and the traditional ensemble (ENTD) per out-of-sample period for forecast horizons t + 1 and
t + 5.
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Figure 2: R2 across out-of-sample periods
This figure shows the OOS R2 of the machine-learning ensemble (ENML) and the traditional ensemble
(ENTD) per out-of-sample period for forecast horizons t + 1 and t + 5.
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Figure 3: Portfolio evaluation
This figure shows the development of an initial investment of 1$ investment across out of sample periods.
We assess three strategies. First, we invest based on implied cost of capital (ICC). At the end of June of a
respective year t, we sort stocks based on their ICC and buy the top quintile. We then collect the returns
from July in t to June in t + 1 and repeat the process. We do this based on ICC derived via ENML forecasts
(ENML-ICC) and based on ICC derived via ENTD forecasts (ENTD-ICC). Second, we invest into the value
weighted market portfolio. Monthly value-weighted market portfolio returns are directly derived via CRSP.
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Figure 4: Variable importance for the machine learning forecast ensemble
This figure depicts the absolute SHAP values of the 20 most important variables for the machine learning
ensemble, averaged over out-of-sample periods and scaled so they sum up to one within each forecast
horizon. In this context, importance is defined as the ranking of the respective variable according to the
aforementioned metric for forecast horizon t + 1.
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Figure 5: Correlation heatmap for the most important variables
This figure shows the absolute Pearson correlation coefficients for the 20 most important variables for the
machine learning ensemble.
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Figure 6: Surrogate models
This figure shows the adjusted R2 of the surrogate models that we fit to our machine learning ensemble
predictions for forecast horizons t + 1 and t + 5. The linear model (linear) is a simple linear model in
which we regress the respective predictions on the 20 most important predictor variables according to
their average absolute SHAP values for t + 1 forecasts. The linear model including interactions (linear incl.
interactions) is a linear model in which we use the same set of predictors as well as all possible two-way
interactions.
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Figure 7: Partial dependence plots
The panels show the sensitivity of expected future earnings to the respective variable for all forecast
horizons. More specifically, we fit a nonparametric lowess model (locally weighted linear regression) to the
SHAP values of the respective variable.
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Figure 8: Accuracy differences per life cycle stage
This figure reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs)
per life cycle stage for the two ensemble models and for t + 1 forecasts. Life cycle stages are defined
following Dickinson (2011) and as of estimation date. An overview is given in Table D.1 in the Appendix.
ENTD denotes the traditional ensemble and ENML denotes the machine learning ensemble. The PAFE is
calculated as the difference between actual and forecasted earnings per share, scaled by price at the end of
June of the respective estimation year.
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Figure 9: Accuracy differences per size tercile
This figure reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs)
per size tercile for the two ensemble models and for t + 1 forecasts. Size is defined as the market
capitalization as of estimation date. Et+1 to Et+5 denote one- to five-year ahead earnings. ENTD denotes
the traditional ensemble and ENML denotes the machine learning ensemble. The PAFE is calculated as
the difference between actual and forecasted earnings per share, scaled by price at the end of June of the
respective estimation year.
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Figure 10: Accuracy differences per industry
This figure reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs)
per industry for the two ensemble models and for t + 1 forecasts. Industries are defined following the
Fama-French 5 industry portfolios classification, available on Kenneth French’s website (https://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), and as of estimation
date. An overview is given in D.2 in the Appendix. Et+1 to Et+5 denote one- to five-year ahead earnings.
ENTD denotes the traditional ensemble and ENML denotes the machine learning ensemble. The PAFE is
calculated as the difference between actual and forecasted earnings per share, scaled by price at the end of
June of the respective estimation year.
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Tables

Table 1: Median PFE

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0007 −0.0001 −0.0027 −0.0083 −0.0146**
HVZMSE 0.0039*** 0.0033 0.0006 −0.0054 −0.0129***
EPMSE 0.0056*** 0.0055** 0.0033 −0.0027 −0.0091*
RIMSE 0.0063*** 0.0059** 0.0028 −0.0032 −0.0103**

ENTD 0.0043*** 0.0035 0.0008 −0.0055 −0.0125**

RFMSE 0.0059*** 0.0062*** 0.0043* 0.0001 −0.0052
GBTMAE −0.0011 −0.0019 −0.0019 −0.0040 −0.0083*
DARTMAE −0.0003 −0.0011 −0.0020 −0.0038 −0.0061
NNMAE −0.0006 −0.0010 −0.0019 −0.0043 −0.0081*

ENML 0.0014 0.0009 0.0001 −0.0029 −0.0070

This table reports the time-series averages of the median price scaled forecasting errors (PFEs) for all models. Et+1 to
Et+5 denote one- to five-year ahead earnings. L is a model with only current earnings as a predictor, HVZ is the model
by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an equally weighted ensemble of
L, HVZ, EP, and RI, RF is a random forest model, GBT and DART are gradient boosted tree models without and with
dropout, NN is a neural net, and ENML is an equally weighted ensemble of RF, GBT, DART, and NN. The superscript
MAE (MSE) indicates that the respective model is estimated using the mean absolute error (mean squared error) as its
loss function. We follow the literature and estimate the traditional models using the MSE. In untabulated results we
find that our results are robust to estimating the traditional models using the MAE. We decide on which loss function
to report for the ML models depending on which one yields more accurate predictions (as indicated by the price
scaled absolute forecast error (PAFE) for the t + 1 horizon). The PFE is calculated as the difference between actual and
forecasted earnings per share, scaled by price at the end of June of the respective estimation year. ***, **, and * denote
statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving statistical
significance are adjusted following Newey and West (1987) assuming a lag length of three years.
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Table 2: Median PAFE

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0297*** 0.0380*** 0.0439*** 0.0499*** 0.0568***
HVZMSE 0.0282*** 0.0360*** 0.0416*** 0.0473*** 0.0534***
EPMSE 0.0280*** 0.0356*** 0.0407*** 0.0451*** 0.0504***
RIMSE 0.0278*** 0.0350*** 0.0394*** 0.0438*** 0.0494***

ENTD 0.0271*** 0.0345*** 0.0396*** 0.0445*** 0.0505***

RFMSE 0.0268*** 0.0344*** 0.0398*** 0.0452*** 0.0494***
GBTMAE 0.0266*** 0.0341*** 0.0394*** 0.0449*** 0.0499***
DARTMAE 0.0243*** 0.0325*** 0.0383*** 0.0444*** 0.0489***
NNMAE 0.0247*** 0.0339*** 0.0380*** 0.0444*** 0.0481***

ENML 0.0240*** 0.0317*** 0.0372*** 0.0425*** 0.0473***

ENML-ENTD −0.0031*** −0.0028*** −0.0024*** −0.0020*** −0.0032***

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) for all models.
Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with only current earnings as a predictor, HVZ is
the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an equally weighted
ensemble of L, HVZ, EP, and RI, RF is a random forest model, GBT and DART are gradient boosted tree models without
and with dropout, NN is a neural net, and ENML is an equally weighted ensemble of RF, GBT, DART, and NN. The
superscript MAE (MSE) indicates that the respective model is estimated using the mean absolute error (mean squared
error) as its loss function. We follow the literature and estimate the traditional models using the MSE. In untabulated
results we find that our results are robust to estimating the traditional models using the MAE. We decide on which loss
function to report for the ML models depending on which one yields more accurate predictions (as indicated by the
price scaled absolute forecast error (PAFE) for the t + 1 horizon). The PAFE is calculated as the difference between
actual and forecasted earnings per share, scaled by price at the end of June of the respective estimation year. ***, **, and
* denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving
statistical significance are adjusted following Newey and West (1987) assuming a lag length of three years.
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Table 3: Average out-of-sample R2

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.3631 0.1932 0.1417 0.0856 0.0262
HVZMSE 0.4198 0.2875 0.2315 0.1596 0.0901
EPMSE 0.4232 0.2843 0.2285 0.1554 0.0934
RIMSE 0.4326 0.3022 0.2501 0.1713 0.0986

ENTD 0.4220 0.2891 0.2440 0.1807 0.1265

RFMSE 0.4659 0.3147 0.2582 0.1792 0.1293
GBTMAE 0.4417 0.2985 0.2458 0.1673 0.1146
DARTMAE 0.4760 0.3237 0.2486 0.1653 0.1154
NNMAE 0.4625 0.2857 0.2527 0.1560 0.1222

ENML 0.4849 0.3447 0.2872 0.2100 0.1561

ENML-ENTD 0.0629*** 0.0556** 0.0433** 0.0293 0.0296

This table reports the time-series averages of the out-of-sample R2s (OOS R2s) for all models. Et+1 to Et+5 denote one-
to five-year ahead earnings. L is a model with only current earnings as a predictor, HVZ is the model by Hou et al.
(2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an equally weighted ensemble of L, HVZ, EP,
and RI, RF is a random forest model, GBT and DART are gradient boosted tree models without and with dropout,
NN is a neural net, and ENML is an equally weighted ensemble of RF, GBT, DART, and NN. The superscript MAE
(MSE) indicates that the respective model is estimated using the mean absolute error (mean squared error) as its loss
function. We follow the literature and estimate the traditional models using the MSE. In untabulated results we find
that our results are robust to estimating the traditional models using the MAE. We decide on which loss function to
report for the ML models depending on which one yields more accurate predictions (as indicated by the price scaled
absolute forecast error (PAFE) for the t + 1 horizon). ***, **, and * denote statistical significance at the 10%, the 5% and
the 1% level, respectively. Standard errors used for deriving statistical significance are adjusted following Newey and
West (1987) assuming a lag length of three years. We only test for statistical significance of the difference between the
ensemble models (ENML - ENTD).
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Table 4: Variable importance by groups

Panel A: Financial statement type

Et+1 Et+2 Et+3 Et+4 Et+5

B/S 0.1928 0.2599 0.3128 0.3361 0.3719
CF/S 0.1503 0.1609 0.1641 0.1529 0.1543
I/S 0.6569 0.5792 0.5231 0.5110 0.4738

Panel B: Variable type

Et+1 Et+2 Et+3 Et+4 Et+5

Current 0.7352 0.6875 0.6506 0.6492 0.6207
Lagged 0.1252 0.1734 0.2080 0.2167 0.2492
Change 0.1396 0.1391 0.1413 0.1341 0.1301

Panel C: Financial statement type × variable type

Et+1 Et+2 Et+3 Et+4 Et+5

B/S current 0.0874 0.1255 0.1563 0.1727 0.1971
B/S lagged 0.0434 0.0677 0.0878 0.0963 0.1069
B/S change 0.0621 0.0668 0.0687 0.0671 0.0679

CF/S current 0.0954 0.0974 0.0924 0.0829 0.0774
CF/S lagged 0.0280 0.0360 0.0430 0.0386 0.0491
CF/S change 0.0269 0.0275 0.0287 0.0314 0.0277

I/S current 0.5525 0.4646 0.4020 0.3936 0.3462
I/S lagged 0.0537 0.0697 0.0772 0.0818 0.0933
I/S change 0.0506 0.0448 0.0439 0.0356 0.0344

Panel A reports the relative variable importance per financial statement group. B/S, CF/S and I/S denote balance
sheet, cash flow statement and income statement, respectively. The variables are grouped according to Table B.2 in the
Appendix. Panel B reports the relative variable importance per variable type. Panel C reports the relative variable
importance per financial statement type × variable type group. Importance per group in each Panel is defined as the
fraction that the respective group contributes to total importance, measured as the sum of absolute SHAP values.
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Table 5: Variable importance: financial statements

Panel A: Balance sheet

Et+1 Et+2 Et+3 Et+4 Et+5

Current assets 0.0283 0.0410 0.0465 0.0495 0.0595
Fixed assets 0.0199 0.0213 0.0270 0.0287 0.0294

Total assets 0.0037 0.0090 0.0123 0.0159 0.0196

Debt 0.0467 0.0635 0.0743 0.0785 0.0929
Equity 0.0336 0.0438 0.0532 0.0596 0.0605

Total debt & equity 0.0029 0.0052 0.0087 0.0101 0.0122

Supplemental 0.0577 0.0761 0.0908 0.0939 0.0979

Sum B/S importance 0.1928 0.2599 0.3128 0.3361 0.3719

Panel B: Cash flow statement

Et+1 Et+2 Et+3 Et+4 Et+5

Operating cash flow 0.1080 0.1081 0.1084 0.0949 0.0976
Investing cash flow 0.0134 0.0184 0.0208 0.0217 0.0211
Financing cash flow 0.0247 0.0288 0.0292 0.0311 0.0302

Total cash flow 0.0042 0.0057 0.0056 0.0052 0.0054

Sum CF/S importance 0.1503 0.1609 0.1641 0.1529 0.1543

Panel C: Income statement

Et+1 Et+2 Et+3 Et+4 Et+5

Sale 0.0072 0.0129 0.0169 0.0211 0.0219
Operating expenses 0.0217 0.0310 0.0355 0.0482 0.0470

EBITDA 0.0380 0.0440 0.0517 0.0432 0.0420

Depr. & Amort. 0.0071 0.0076 0.0072 0.0085 0.0108

EBIT 0.1766 0.1625 0.1397 0.1426 0.1240

Interest expenses 0.0542 0.0462 0.0406 0.0328 0.0325

EBT 0.0656 0.0416 0.0311 0.0299 0.0208

Tax epsenses 0.0318 0.0395 0.0438 0.0406 0.0455

Net Income 0.2460 0.1818 0.1430 0.1313 0.1174

Dividends 0.0087 0.0120 0.0136 0.0128 0.0118

Sum I/S importance 0.6569 0.5792 0.5231 0.5110 0.4738

This table reports the relative variable importance per financial statement group. B/S, CF/S and I/S denote balance
sheet, cash flow statement and income statement. EBITDA denotes earnings before interest, taxes and depreciation
and amortization. EBIT denotes earnings before interest and taxes. EBT denotes earnings before taxes. The variables
are grouped according to Table B.2 in the Appendix. Importance per financial statement component is defined as the
fraction that the respective component contributes to total importance, measured as the sum of absolute SHAP values.
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Table 6: Variable importance by financial statement type per life cycle stage

Firm size Financial statement Et+1 Et+2 Et+3 Et+4 Et+5

Intro
ENTD 0.2199 0.2810 0.3330 0.3742 0.4062
ENML 0.1578 0.1657 0.1538 0.1479 0.1418
ENML - ENTD 0.6222 0.5532 0.5133 0.4779 0.4520

Growth
ENTD 0.1975 0.2558 0.3107 0.3384 0.3775
ENML 0.1554 0.1617 0.1559 0.1524 0.1596
ENML - ENTD 0.6471 0.5825 0.5334 0.5093 0.4629

Mature
ENTD 0.2156 0.2943 0.3468 0.3902 0.4089
ENML 0.1506 0.1538 0.1534 0.1458 0.1510
ENML - ENTD 0.6338 0.5519 0.4998 0.4640 0.4401

Shake-out
ENTD 0.2091 0.2718 0.3237 0.3470 0.3773
ENML 0.1515 0.1604 0.1590 0.1497 0.1420
ENML - ENTD 0.6394 0.5678 0.5174 0.5033 0.4807

Decline
ENTD 0.2066 0.2844 0.3558 0.3933 0.4378
ENML 0.1706 0.1757 0.1703 0.1678 0.1605
ENML - ENTD 0.6228 0.5399 0.4739 0.4388 0.4017

This table reports the relative variable importance per financial statement and per life cycle stage. Life cycle stages are
defined following Dickinson (2011) and as of estimation date. An overview is given in Table D.1 in the Appendix. Et+1
to Et+5 denote one- to five-year ahead earnings. B/S , CF/S and I/S denote balance sheet, cash flow statement and
income statement respectively. The variables are grouped according to Table B.2 in the Appendix. Importance per
financial statement type is defined as the fraction that the respective group contributes to total importance, measured
as the sum of absolute SHAP values.

Table 7: Surrogate R2 per life cycle stage

Life cycle stage Interactions Et+1 Et+2 Et+3 Et+4 Et+5

Intro No 0.8682 0.8461 0.8245 0.8226 0.8274
Yes 0.9811 0.9671 0.9447 0.9565 0.9492

Growth No 0.9466 0.9205 0.9176 0.9173 0.9138
Yes 0.9798 0.9683 0.9609 0.9602 0.9606

Mature No 0.9464 0.9246 0.9243 0.9180 0.9058
Yes 0.9799 0.9676 0.9612 0.9593 0.9513

Shake-out No 0.9447 0.9181 0.9144 0.9141 0.9009
Yes 0.9864 0.9781 0.9680 0.9666 0.9629

Decline No 0.8604 0.8341 0.8002 0.7979 0.8021
Yes 0.9711 0.9183 0.8573 0.8952 0.9025

This table reports the average adjusted R2s of the surrogate models per industry. Life cycle stages are defined following
Dickinson (2011) and as of estimation date. An overview is given in Table D.1 in the Appendix. The surrogate model
without (with) interactions is a linear model which regresses the ENML predictions on the twenty most important
variables (plus all possible two-way interactions) as of estimation date. Importance is defined as the fraction that the
respective variable contributes to total importance, measured as the sum of absolute SHAP values. For each forecast
horizon and industry, we repeat this regression per ENML out-of-sample prediction and report the average adjusted
R2 across surrogates. Et+1 to Et+5 denote one- to five-year ahead earnings.
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Table 8: Variable importance by financial statement type per size tercile

Firm size Financial statement Et+1 Et+2 Et+3 Et+4 Et+5

Small
B/S 0.2181 0.3016 0.3508 0.3791 0.4213
CF/S 0.1703 0.1653 0.1579 0.1614 0.1598
I/S 0.6115 0.5331 0.4913 0.4595 0.4189

Medium
B/S 0.2015 0.2659 0.3196 0.3333 0.3992
CF/S 0.1545 0.1588 0.1543 0.1420 0.1421
I/S 0.6440 0.5753 0.5262 0.5246 0.4587

Large
B/S 0.2151 0.2818 0.3265 0.3528 0.3915
CF/S 0.1536 0.1493 0.1494 0.1503 0.1426
I/S 0.6313 0.5690 0.5241 0.4968 0.4659

This table reports the relative variable importance per financial statement and per size tercile. Size is defined as the
market capitalization as of estimation date. Et+1 to Et+5 denote one- to five-year ahead earnings. B/S , CF/S and I/S
denote balance sheet, cash flow statement and income statement respectively. The variables are grouped according to
Table B.2 in the Appendix. Importance per financial statement type is defined as the fraction that the respective group
contributes to total importance, measured as the sum of absolute SHAP values.

Table 9: Surrogate R2 per size tercile

Firm size Interactions Et+1 Et+2 Et+3 Et+4 Et+5

Small No 0.8927 0.8686 0.8489 0.8529 0.8496
Yes 0.9769 0.9611 0.9478 0.9527 0.9456

Medium No 0.9361 0.9016 0.8947 0.8925 0.8778
Yes 0.9763 0.9608 0.9494 0.9472 0.9427

Large No 0.9155 0.8913 0.8971 0.8910 0.8817
Yes 0.9755 0.9616 0.9530 0.9510 0.9449

This table reports the average adjusted R2s of the surrogate models per industry. Size is defined as the market
capitalization as of estimation date. The surrogate model without (with) interactions is a linear model which regresses
the ENML predictions on the twenty most important variables (plus all possible two-way interactions) as of estimation
date. Importance is defined as the fraction that the respective variable contributes to total importance, measured
as the sum of absolute SHAP values. For each forecast horizon and industry, we repeat this regression per ENML
out-of-sample prediction and report the average adjusted R2 across surrogates. Et+1 to Et+5 denote one- to five-year
ahead earnings.
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Table 10: Variable importance by financial statement type per industry

Industry Financial statement Et+1 Et+2 Et+3 Et+4 Et+5

1
B/S 0.2189 0.2922 0.3427 0.3702 0.4115
CF/S 0.1592 0.1649 0.1511 0.1507 0.1449
I/S 0.6219 0.5429 0.5062 0.4792 0.4436

2
B/S 0.2070 0.2804 0.3385 0.3568 0.4089
CF/S 0.1648 0.1736 0.1702 0.1510 0.1461
I/S 0.6282 0.5460 0.4912 0.4922 0.4450

3
B/S 0.2284 0.2974 0.3441 0.3654 0.4027
CF/S 0.1535 0.1578 0.1493 0.1363 0.1435
I/S 0.6181 0.5448 0.5067 0.4983 0.4538

4
B/S 0.2165 0.2870 0.3258 0.3470 0.4020
CF/S 0.1565 0.1713 0.1583 0.1521 0.1448
I/S 0.6270 0.5418 0.5159 0.5008 0.4533

5
B/S 0.2132 0.3024 0.3478 0.4010 0.4388
CF/S 0.1742 0.1911 0.1878 0.1578 0.1484
I/S 0.6126 0.5065 0.4644 0.4412 0.4127

This table reports the relative variable importance per financial statement and per industry. Industries are defined
following the Fama-French 5 industry portfolios classification, available on Kenneth French’s website (https://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), and as of estimation date.
An overview is given in D.2 in the Appendix. Et+1 to Et+5 denote one- to five-year ahead earnings. B/S , CF/S and
I/S denote balance sheet, cash flow statement and income statement respectively. The variables are grouped according
to Table B.2 in the Appendix. Importance per financial statement type is defined as the fraction that the respective
group contributes to total importance, measured as the sum of absolute SHAP values.
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Table 11: Surrogate R2 per industry

Industry Interactions Et+1 Et+2 Et+3 Et+4 Et+5

1 No 0.9439 0.9226 0.9161 0.9110 0.8984
Yes 0.9849 0.9759 0.9697 0.9652 0.9632

2 No 0.9484 0.9177 0.9202 0.9180 0.9048
Yes 0.9803 0.9689 0.9627 0.9594 0.9535

3 No 0.9443 0.9205 0.9107 0.9156 0.9161
Yes 0.9830 0.9717 0.9600 0.9636 0.9620

4 No 0.9593 0.9479 0.9386 0.9263 0.9209
Yes 0.9910 0.9823 0.9753 0.9731 0.9757

5 No 0.9362 0.9117 0.9036 0.9035 0.9001
Yes 0.9792 0.9659 0.9552 0.9556 0.9511

This table reports the average adjusted R2s of the surrogate models per industry. Industries are defined following
the Fama-French 5 industry portfolios classification, available on Kenneth French’s website (https://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html), and as of estimation date. An overview
is given in D.2 in the Appendix. The surrogate model without (with) interactions is a linear model which regresses the
ENML predictions on the twenty most important variables (plus all possible two-way interactions) as of estimation date.
Importance is defined as the fraction that the respective variable contributes to total importance, measured as the sum
of absolute SHAP values. For each forecast horizon and industry, we repeat this regression per ENML out-of-sample
prediction and report the average adjusted R2 across surrogates. Et+1 to Et+5 denote one- to five-year ahead earnings.
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Appendix A Traditional earnings prediction models

Table A.1: Traditional earnings prediction models

Panel A: Traditional model specifications

Name Model Source

L Et[Ei,t+τ ] = β0 + β1Ei,t Gerakos and Gramacy (2012)

HVZ Et[Ei,t+τ ] = β0 + β1Ei,t + β2 Ai,t + β3Di,t + β4DDi,t
+β5NegEi,t + β6 ACCi,t

Hou et al. (2012)

EP Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t Li and Mohanram (2014)

RI Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t
+β4Bi,t + β5 ACCi,t

Li and Mohanram (2014)

Panel B: Variable definitions

Variable Definition

E Income before extraordinary items (ib) / Common shares outstanding (csho)

A Total assets (at) / csho

D Dividends total (dvt) / csho

DD 1 if dvt > 0; 0 else

NegE 1 if ib < 0; 0 else

ACC (Income before extraordinary items (ib) - Operating activities - net cash flow (oancf)) /
csho

B Common/Ordinary equity- total (ceq) / csho

Panel A reports the traditional earnings models estimated. Et[Ei,t+τ ] denotes the expectation for earnings E of firm i in
period t + τ as of t. β0-β5 are the model coefficients. Panel B reports the variable definitions for the traditional models.
Compustat variable names are provided in parentheses. Note the slight changes as opposed to the original papers.
More precisely, we scale all variables by common shares outstanding and use a consistent earnings as well as accruals
definition.
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Appendix B Machine learning earnings prediction models

Table B.1: Hyperparameters for the machine learning models

RF, GBT & DART

Maximum number of trees 512
Learning rate ∈ [0.001, 0.01, 0.1, 1]
Maximum depth Uint(2, 10)
Maximum number of leaves Uint(2, 512)
L1-regularization U(0, 0.1)
L2-regularization U(0, 0.1)
Feature fraction U(0.25, 1)
Bagging fraction U(0.25, 1)
Bagging frequency ∈ (1, 10, 50)

DART Dropout rate ∈ (0.05, 0.1, 0.15)
DART Probability of skipping dropout ∈ (0.25, 0.5)

NN

Learning rate ∈ [0.001, 0.01, 0.1, 1]
L1-regularization U(0, 0.1)
Dropout U(0, 0.5)
Number of hidden layers ∈ [1, 2, 3, 4, 5]
First layer size ∈ [32, 64, 128]
Batch size ∈ [211, 212, 213, 214]

This table gives the hyperparameters that we tune and their respective boundaries. U (Uint) means drawing from a
uniform (integer-wise uniform) distribution. Our choice of hyperparameters and their respective boundaries is based
on Bali et al. (2023). We use the Ray Python framework to efficiently optimize the hyperparameters (Liaw et al., 2018).

55



Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

1 aco Current assets - other - total Balance sheet Current assets

2 acox Current assets - other - sundry Balance sheet Current assets

3 act Current assets - total Balance sheet Current assets

4 am Amortization of intangibles Income statement Depreciation and amortization

5 ao Assets - other Balance sheet Fixed assets

6 aoloch Assets and liabilities - other - net change Cash flow statement Operating cash flow

7 aox Assets - other - sundry Balance sheet Fixed assets

8 ap Accounts payable - trade Balance sheet Liabilities

9 apalch Accounts payable and accrued liabilities - increase/(decrease) Cash flow statement Operating cash flow

10 aqc Acquisitions Cash flow statement Investing cash flow

11 aqi Acquisitions - income contribution Income statement Interest and other

12 aqs Acquisitions - sales contribution Income statement Sales

13 at Assets - total Balance sheet Total assets

14 caps Capital surplus/share premium reserve Balance sheet Equity

15 capx Capital expenditures Cash flow statement Investing cash flow

16 capxv Capital expend property, plant and equipment schd v Cash flow statement Investing cash flow

17 ceq Common/ordinary equity - total Balance sheet Equity

18 ceql Common equity - liquidation value Balance sheet Supplemental

19 ceqt Common equity - tangible Balance sheet Supplemental

20 ch Cash Balance sheet Current assets

21 che Cash and short-term investments Balance sheet Current assets

22 chech Cash and cash equivalents - increase/(decrease) Cash flow statement Total cash flow

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

23 cld2 Capitalized leases - due in 2nd year Balance sheet Supplemental

24 cld3 Capitalized leases - due in 3rd year Balance sheet Supplemental

25 cld4 Capitalized leases - due in 4th year Balance sheet Supplemental

26 cld5 Capitalized leases - due in 5th year Balance sheet Supplemental

27 cogs Cost of goods sold Income statement Operating expenses

28 cstk Common/ordinary stock (capital) Balance sheet Equity

29 cstkcv Common stock-carrying value Balance sheet Supplemental

30 cstke Common stock equivalents - dollar savings Income statement Interest and other

31 dc Deferred charges Balance sheet Fixed assets

32 dclo Debt - capitalized lease obligations Balance sheet Liabilities

33 dcpstk Convertible debt and preferred stock Balance sheet Supplemental

34 dcvsr Debt - senior convertible Balance sheet Liabilities

35 dcvsub Debt - subordinated convertible Balance sheet Liabilities

36 dcvt Debt - convertible Balance sheet Liabilities

37 dd Debt - debentures Balance sheet Liabilities

38 dd1 Long-term debt due in one year Balance sheet Liabilities

39 dd2 Debt - due in 2nd year Balance sheet Liabilities

40 dd3 Debt - due in 3rd year Balance sheet Liabilities

41 dd4 Debt - due in 4th year Balance sheet Liabilities

42 dd5 Debt - due in 5th year Balance sheet Liabilities

43 dlc Debt in current liabilities - total Balance sheet Liabilities

44 dltis Long-term debt - issuance Cash flow statement Financing cash flow

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

45 dlto Other long-term debt Balance sheet Liabilities

46 dltp Long-term debt - tied to prime Balance sheet Liabilities

47 dltr Long-term debt - reduction Cash flow statement Financing cash flow

48 dltt Long-term debt - total Balance sheet Liabilities

49 dm Debt - mortgages and other secured Balance sheet Liabilities

50 dn Debt - notes Balance sheet Liabilities

51 do Discontinued operations Income statement Interest and other

52 dp Depreciation and amortization Income statement Depreciation and amortization

53 dpact Depreciation, depletion and amortization (accumulated) Balance sheet Fixed assets

54 dpc Depreciation and amortization (cash flow) Cash flow statement Operating cash flow

55 dpvieb Depreciation (accumulated) - ending balance (schedule vi) Balance sheet Supplemental

56 ds Debt-subordinated Balance sheet Liabilities

57 dudd Debt - unamortized debt discount and other Balance sheet Liabilities

58 dv Cash dividends (cash flow) Cash flow statement Financing cash flow

59 dvc Dividends common/ordinary Income statement Dividends

60 dvp Dividends - preferred/preference Income statement Dividends

61 dvpa Preferred dividends in arrears Balance sheet Supplemental

62 dvt Dividends - total Income statement Dividends

63 dxd2 Debt (excl capitalized leases) - due in 2nd year Balance sheet Supplemental

64 dxd3 Debt (excl capitalized leases) - due in 3rd year Balance sheet Supplemental

65 dxd4 Debt (excl capitalized leases) - due in 4th year Balance sheet Supplemental

66 dxd5 Debt (excl capitalized leases) - due in 5th year Balance sheet Supplemental

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

67 ebit Earnings before interest and taxes Income statement EBIT

68 ebitda Earnings before interest Income statement EBITDA

69 esub Equity in earnings - unconsolidated subsidiaries Income statement Interest and other

70 esubc Equity in net loss - earnings Cash flow statement Operating cash flow

71 exre Exchange rate effect Cash flow statement Total cash flow

72 fatb Property, plant, and equipment - buildings at cost Balance sheet Supplemental

73 fatc Property, plant, and equipment - construction in progress at cost Balance sheet Supplemental

74 fate Property, plant, and equipment - machinery and equipment at cost Balance sheet Supplemental

75 fatl Property, plant, and equipment - leases at cost Balance sheet Supplemental

76 fatn Property, plant, and equipment - natural resources at cost Balance sheet Supplemental

77 fato Property, plant, and equipment - other at cost Balance sheet Supplemental

78 fatp Property, plant, and equipment - land and improvements at cost Balance sheet Supplemental

79 fiao Financing activities - other Cash flow statement Financing cash flow

80 fincf Financing activities - net cash flow Cash flow statement Financing cash flow

81 fopo Funds from operations - other Cash flow statement Operating cash flow

82 gp Gross profit Income statement Operating expenses

83 ib Income before extraordinary items Income statement Net income

84 ibadj Income before extraordinary items - adjusted for common stock equivalents Income statement Net income

85 ibc Income before extraordinary items (cash flow) Cash flow statement Operating cash flow

86 ibcom Income before extraordinary items - available for common Income statement Net income

87 icapt Invested capital - total Balance sheet Supplemental

88 idit Interest and related income - total Income statement Interest and other

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

89 intan Intangible assets - total Balance sheet Fixed assets

90 intc Interest capitalized Income statement Interest and other

91 intpn Interest paid - net Cash flow statement Operating cash flow

92 invch Inventory - decrease (increase) Cash flow statement Operating cash flow

93 invfg Inventories - finished goods Balance sheet Current assets

94 invo Inventories - other Balance sheet Current assets

95 invrm Inventories - raw materials Balance sheet Current assets

96 invt Inventories - total Balance sheet Current assets

97 invwip Inventories - work in process Balance sheet Current assets

98 itcb Investment tax credit (balance sheet) Balance sheet Liabilities

99 itci Investment tax credit (income account) Income statement Taxes

100 ivaco Investing activities - other Cash flow statement Investing cash flow

101 ivaeq Investment and advances - equity Balance sheet Fixed assets

102 ivao Investment and advances - other Balance sheet Fixed assets

103 ivch Increase in investments Cash flow statement Investing cash flow

104 ivncf Investing activities - net cash flow Cash flow statement Investing cash flow

105 ivst Short-term investments - total Balance sheet Current assets

106 ivstch Short-term investments - change Cash flow statement Investing cash flow

107 lco Current liabilities - other - total Balance sheet Liabilities

108 lcox Current liabilities - other - sundry Balance sheet Liabilities

109 lct Current liabilities - total Balance sheet Liabilities

110 lifr Lifo reserve Balance sheet Supplemental

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

111 lo Liabilities - other - total Balance sheet Liabilities

112 lse Liabilities and stockholders equity - total Balance sheet Total liabilities and equity

113 lt Liabilities - total Balance sheet Liabilities

114 mib Noncontrolling interest (balance sheet) Balance sheet Liabilities

115 mii Noncontrolling interest (income account) Income statement Interest and other

116 mrc1 Rental commitments - minimum - 1st year Balance sheet Supplemental

117 mrc2 Rental commitments - minimum - 2nd year Balance sheet Supplemental

118 mrc3 Rental commitments - minimum - 3rd year Balance sheet Supplemental

119 mrc4 Rental commitments - minimum - 4th year Balance sheet Supplemental

120 mrc5 Rental commitments - minimum - 5th year Balance sheet Supplemental

121 mrct Rental commitments - minimum - 5 year total Balance sheet Supplemental

122 msa Marketable securities adjustment Balance sheet Supplemental

123 ni Net income (loss) Income statement Net income

124 niadj Net income adjusted for common/ordinary stock (capital) equivalents Income statement Net income

125 nopi Nonoperating income (expense) Income statement Interest and other

126 nopio Nonoperating income (expense) - other Income statement Interest and other

127 np Notes payable - short-term borrowings Balance sheet Liabilities

128 oancf Operating activities - net cash flow Cash flow statement Operating cash flow

129 oiadp Operating income after depreciation Income statement EBIT

130 oibdp Operating income before depreciation Income statement EBITDA

131 pi Pretax income Income statement EBIT

132 ppegt Property, plant and equipment - total (gross) Balance sheet Fixed assets

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

133 ppent Property, plant and equipment - total (net) Balance sheet Fixed assets

134 ppeveb Property, plant, and equipment - ending balance (schedule v) Balance sheet Supplemental

135 prstkc Purchase of common and preferred stock Cash flow statement Financing cash flow

136 pstk Preferred/preference stock (capital) - total Balance sheet Equity

137 pstkc Preferred stock - convertible Balance sheet Equity

138 pstkl Preferred stock - liquidating value Balance sheet Supplemental

139 pstkn Preferred/preference stock - nonredeemable Balance sheet Equity

140 pstkr Preferred/preference stock - redeemable Balance sheet Equity

141 pstkrv Preferred stock - redemption value Balance sheet Supplemental

142 re Retained earnings Balance sheet Equity

143 rea Retained earnings - restatement Balance sheet Supplemental

144 reajo Retained earnings - other adjustments Balance sheet Supplemental

145 recch Accounts receivable - decrease (increase) Cash flow statement Operating cash flow

146 recco Receivables - current - other Balance sheet Current assets

147 recd Receivables - estimated doubtful Balance sheet Current assets

148 rect Receivables - tota Balance sheet Current assets

149 recta Retained earnings - cumulative translation adjustment Balance sheet Supplemental

150 rectr Receivables - trade Balance sheet Current assets

151 reuna Retained earnings - unadjusted Balance sheet Equity

152 revt Revenue - total Income statement Sales

153 sale Sales/turnover (net) Income statement Sales

154 seq Stockholders equity - parent Balance sheet Equity

Continued on next page
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Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

155 siv Sale of investments Cash flow statement Investing cash flow

156 spi Special items Income statement Interest and other

157 sppe Sale of property Cash flow statement Operating cash flow

158 sppiv Sale of property, plant and equipment and investments - gain (loss) Cash flow statement Operating cash flow

159 sstk Sale of common and preferred stock Cash flow statement Financing cash flow

160 tlcf Tax loss carry forward Balance sheet Supplemental

161 tstk Treasury stock - total (all capital) Balance sheet Equity

162 tstkc Treasury stock - common Balance sheet Equity

163 tstkp Treasury stock - preferrred Balance sheet Equity

164 txach Income taxes - accrued - increase/(decrease) Cash flow statement Operating cash flow

165 txc Income taxes - current Income statement Taxes

166 txdb Deferred taxes (balance sheet) Balance sheet Liabilities

167 txdc Deferred taxes (cash flow) Income statement Operating cash flow

168 txdfed Deferred taxes-federal Income statement Taxes

169 txdfo Deferred taxes-foreign Income statement Taxes

170 txdi Income taxes - deferred Income statement Taxes

171 txditc Deferred taxes and investment tax credit Balance sheet Liabilities

172 txds Deferred taxes-state Income statement Taxes

173 txfed Income taxes - federal Income statement Taxes

174 txfo Income taxes - foreign Income statement Taxes

175 txo Income taxes - other Income statement Taxes

176 txp Income taxes payable Balance sheet Liabilities

Continued on next page

63



Table B.2: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

177 txpd Income taxes paid Cash flow statement Operating cash flow

178 txr Income tax refund Balance sheet Current assets

179 txs Income taxes - state Income statement Taxes

180 txt Income taxes - total Income statement Taxes

181 txw Excise taxes Income statement Taxes

182 wcap Working capital (balance sheet) Balance sheet Supplemental

183 xacc Accrued expenses Balance sheet Liabilities

184 xi Extraordinary items Income statement Interest and other

185 xido Extraordinary items and discontinued operations Income statement Interest and other

186 xidoc Extraordinary items and discontinued operations (cash flow) Cash flow statement Operating cash flow

187 xint Interest and related expense - total Income statement Interest and other

188 xopr Operating expenses - total Income statement Operating expenses

189 xpp Prepaid expenses Balance sheet Current assets

190 xpr Pension and retirement expense Income statement Operating expenses

191 xrd Research and development expense Income statement Operating expenses

192 xrent Rental expense Income statement Operating expenses

193 xsga Selling, general and administrative expense Income statement Operating expenses

This table reports the input variables used in our machine learning models. We also report the Compustat description, the financial statement group as well as the
financial statement component group we assign to the respective variable. EBITDA denotes earnings before interest, taxes, depreciation and amortization. EBIT
denotes earnings before interest and taxes. EBT denotes earnings before taxes. We scale all variables by common shares outstanding.
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Appendix C Implied Cost of Capital models
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Table C.1: Implied cost of capital models

Name Model/Description

GLS Pt = Bt + Σ11
τ=1

Et [(ROEt+τ−ICCGLS)·Bt+τ−1]
(1+ICCGLS)τ + Et [ROEt+12−ICCGLS)·Bt+11]

(1+ICCGLS)11·ICCGLS

This model is given by Gebhardt et al. (2001). Pt denotes the stock price as of the estimation
date in t, ICCGLS denotes the implied cost of capital (ICC), Bt denotes the book value of equity
per share in t and ROEt is the return on equity in t. Bt is calculated using the clean surplus
relation following Hou et al. (2012). ROEt is calculated by dividing earnings per share (forecasts)
Et by Bt−1. For ROEt+τ up to τ = 3 we use the respective models earnings per share forecast.
Afterwards, we assume ROEt+τ to revert to the historical industry median by τ = 11 (e.g., Hou
et al., 2012). The industry median of ROE is derived using 10 years of data while excluding loss
firms (e.g., Gebhardt et al., 2001). We expect ROE to be constant after τ = 11.

CT Pt = Bt + ∑5
τ=1

Et [(ROEt+τ−ICCCT)·Bt+τ−1]
(1+ICCCT)τ + Et [(ROEt+5−ICCCT)·Bt+4]·(1+g)

(1+ICCCT)5·(ICCCT−g)

This model is given by Claus and Thomas (2001). Pt denotes the stock price as of the estimation
date in t, ICCCT denotes the implied cost of capital (ICC), Bt denotes the book value of equity per
share in t, ROEt is the return on equity in t and g is the perpetuity growth rate. Bt is calculated
using the clean surplus relation following Hou et al. (2012). ROEt is calculated by dividing
earnings per share (forecasts) Et by Bt−1. g is calculated as the current risk-free rate minus 3%
(e.g., Hou et al., 2012).

OJ
Pt =

Et [Et+1]·(gst−(γ−1))
(R−A)−A2 , with

A = 0.5((γ − 1)Et [Et+1]·payout
Pt

), gst = 0.5(Et [Et+3]−Et [Et+2]
Et [Et+2]

− Et [Et+5]−Et [Et+4]
Et [Et+4]

)

This model is given by Ohlson and Juettner-Nauroth (2005). Pt denotes the stock price as of
the estimation date in t, ICCOJ denotes the implied cost of capital (ICC), Et+τ is the earnings
forecast for t + τ, gst is the short-term growth rate, γ is the perpetual growth rate and payout is
the current payout ratio. gst is calculated as the mean of forecasted earnings growth in τ = 3
and τ = 5 (e.g., Hou et al., 2012). γ is the current risk-free rate minus 3% (e.g., Hou et al., 2012).
payout is calculated as dividends divided by earnings for profit firms and as dividends divided
by 0.06 · total assets for loss firms (e.g., Hou et al. (2012)).

MPEG Pt =
Et [Et+2]+(ICCMPEG ·payout−1)·Et [Et+1]

ICC2
MPEG

This model is given by Easton (2004). Pt denotes the stock price as of the estimation date in
t, ICCMPEG denotes the implied cost of capital (ICC) and Et+τ denotes the earnings per share
forecast for t + τ. payout is derived as dividends divided by earnings for profit firms and as
dividends divided by 0.06 · total assets for loss firms (e.g., Hou et al., 2012).

GG Pt =
Et [Et+1]
ICCGG

This model is given by Gordon and Gordon (1997). Pt denotes the stock price as of the estimation
date in t, ICCGG denotes the implied cost of capital (ICC) and Et+1 denotes the earnings per share
forecast for t + 1.

This table gives implied cost of capital (ICC) models that we base our composite ICC on. For simplicity, we drop the
firm index i. The composite ICC that we use is derived as the average of these ICC.
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Appendix D Subsample analysis

Table D.1: Firm life cycle stages

Cash flows from Intro Growth Mature Shake-out Shake-out Shake-out Decline Decline

operating activities - + + + + - - -
investing activities - - - + + + - -
financing activities + + - + - + + -

This table provides the firm life cycle stages based on the respective firm’s cash flows. A plus sign indicates a positive
cash flow and a minus sign indicates a negative cash flow. The classification follows Dickinson (2011).
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Table D.2: Industry classifications

No. Industry Name SIC Code Ranges

1 Consumer Durables, Nondurables, Wholesale, Retail, and Some Services 0100-0999, 2000-2399, 2700-2749, 2770-2799, 3100-3199,

3940-3989, 2500-2519, 2590-2599, 3630-3659, 3710-3711,

3714-3714, 3716-3716, 3750-3751, 3792-3792, 3900-3939,

3990-3999, 5000-5999, 7200-7299, 7600-7699

2 Manufacturing, Energy, and Utilities 2520-2589, 2600-2699, 2750-2769, 2800-2829, 2840-2899,

3000-3099, 3200-3569, 3580-3621, 3623-3629, 3700-3709,

3712-3713, 3715-3715, 3717-3749, 3752-3791, 3793-3799,

3860-3899, 1200-1399, 2900-2999, 4900-4949

3 Business Equipment, Telephone and Television Transmission 3570-3579, 3622-3622, 3660-3692, 3694-3699, 3810-3839,

7370-7372, 7373-7373, 7374-7374, 7375-7375, 7376-7376,

7377-7377, 7378-7378, 7379-7379, 7391-7391, 8730-8734,

4800-4899

4 Healthcare, Medical Equipment, and Drugs 2830-2839, 3693-3693, 3840-3859, 8000-8099

5 Other – Mines, Construction, Building Materials, Transportation, Hotels, Remaining

Business Services, Entertainment, Finance

This table provides industry classifications based on SIC code ranges. We follow the Fama-French 5 industry portfolios classification, available on Kenneth French’s
website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
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Table D.3: Median PAFE per life cycle stage

Life cycle stage Model Et+1 Et+2 Et+3 Et+4 Et+5

Intro
ENTD 0.0573*** 0.0685*** 0.0737*** 0.0832*** 0.0915***
ENML 0.0464*** 0.0597*** 0.0696*** 0.0778*** 0.0799***
ENML - ENTD −0.0110*** −0.0087*** −0.0041 −0.0054 −0.0116*

Growth
ENTD 0.0228*** 0.0308*** 0.0358*** 0.0413*** 0.0465***
ENML 0.0206*** 0.0283*** 0.0345*** 0.0410*** 0.0450***
ENML - ENTD −0.0022*** −0.0024*** −0.0013** −0.0003 −0.0015

Mature
ENTD 0.0222*** 0.0289*** 0.0331*** 0.0369*** 0.0417***
ENML 0.0196*** 0.0261*** 0.0306*** 0.0343*** 0.0392***
ENML - ENTD −0.0026*** −0.0028*** −0.0026*** −0.0026*** −0.0024***

Shake-out
ENTD 0.0301*** 0.0374*** 0.0421*** 0.0501*** 0.0568***
ENML 0.0267*** 0.0339*** 0.0397*** 0.0459*** 0.0511***
ENML - ENTD −0.0034*** −0.0035*** −0.0024 −0.0042** −0.0058***

Decline
ENTD 0.0748*** 0.0894*** 0.0936*** 0.1002*** 0.1091***
ENML 0.0662*** 0.0824*** 0.0935*** 0.0957*** 0.1035***
ENML - ENTD −0.0086*** −0.0070*** −0.0001 −0.0044 −0.0056

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) per life cycle
stage for the two ensemble models. Life cycle stages are defined following Dickinson (2011) and as of estimation date.
An overview is given in Table D.1 in the Appendix. Et+1 to Et+5 denote one- to five-year ahead earnings. ENTD
denotes the traditional ensemble and ENML denotes the machine learning ensemble. The PAFE is calculated as
the difference between actual and forecasted earnings per share, scaled by price at the end of June of the respective
estimation year. ***, **, and * denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard
errors used for deriving statistical significance are adjusted following Newey and West (1987) assuming a lag length of
three years.
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Table D.4: Median PAFE per size tercile

Firm size Model Et+1 Et+2 Et+3 Et+4 Et+5

Small
ENTD 0.0594*** 0.0695*** 0.0773*** 0.0851*** 0.0958***
ENML 0.0522*** 0.0651*** 0.0731*** 0.0780*** 0.0837***
ENML - ENTD −0.0073*** −0.0045** −0.0042* −0.0071*** −0.0121***

Medium
ENTD 0.0277*** 0.0361*** 0.0411*** 0.0466*** 0.0525***
ENML 0.0244*** 0.0330*** 0.0387*** 0.0447*** 0.0500***
ENML - ENTD −0.0033*** −0.0031*** −0.0024*** −0.0020*** −0.0025***

Large
ENTD 0.0167*** 0.0224*** 0.0260*** 0.0294*** 0.0330***
ENML 0.0138*** 0.0197*** 0.0240*** 0.0287*** 0.0324***
ENML - ENTD −0.0030*** −0.0027*** −0.0020*** −0.0006 −0.0006

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) per size tercile
for the two ensemble models. Size is defined as the market capitalization as of estimation date. Et+1 to Et+5 denote
one- to five-year ahead earnings. ENTD denotes the traditional ensemble and ENML denotes the machine learning
ensemble. The PAFE is calculated as the difference between actual and forecasted earnings per share, scaled by price at
the end of June of the respective estimation year. ***, **, and * denote statistical significance at the 1%, the 5% and the
10% level, respectively. Standard errors used for deriving statistical significance are adjusted following Newey and
West (1987) assuming a lag length of three years.

Table D.5: Median PAFE per industry

Industry Model Et+1 Et+2 Et+3 Et+4 Et+5

1
ENTD 0.0257*** 0.0324*** 0.0375*** 0.0414*** 0.0457***
ENML 0.0225*** 0.0290*** 0.0342*** 0.0387*** 0.0431***
ENML - ENTD −0.0032*** −0.0034*** −0.0033*** −0.0028*** −0.0026***

2
ENTD 0.0287*** 0.0340*** 0.0376*** 0.0410*** 0.0444***
ENML 0.0257*** 0.0317*** 0.0348*** 0.0382*** 0.0415***
ENML - ENTD −0.0030*** −0.0023*** −0.0028*** −0.0028*** −0.0028**

3
ENTD 0.0300*** 0.0382*** 0.0424*** 0.0454*** 0.0519***
ENML 0.0258*** 0.0333*** 0.0371*** 0.0406*** 0.0461***
ENML - ENTD −0.0042*** −0.0049*** −0.0053*** −0.0049*** −0.0059***

4
ENTD 0.0296*** 0.0378*** 0.0439*** 0.0515*** 0.0569***
ENML 0.0246*** 0.0351*** 0.0400*** 0.0471*** 0.0504***
ENML - ENTD −0.0050*** −0.0026*** −0.0039*** −0.0043* −0.0065**

5
ENTD 0.0263*** 0.0340*** 0.0397*** 0.0468*** 0.0555***
ENML 0.0233*** 0.0321*** 0.0401*** 0.0474*** 0.0539***
ENML - ENTD −0.0031*** −0.0019* 0.0004 0.0006 −0.0016

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) per industry
for the two ensemble models. Industries are defined following the Fama-French 5 industry portfolios classification,
available on Kenneth French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html), and as of estimation date. An overview is given in D.2 in the Appendix. Et+1 to Et+5 denote
one- to five-year ahead earnings. ENTD denotes the traditional ensemble and ENML denotes the machine learning
ensemble. The PAFE is calculated as the difference between actual and forecasted earnings per share, scaled by price at
the end of June of the respective estimation year. ***, **, and * denote statistical significance at the 1%, the 5% and the
10% level, respectively. Standard errors used for deriving statistical significance are adjusted following Newey and
West (1987) assuming a lag length of three years.
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